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Abstract—Quantum sensing and communication (QSC) is piv-
otal for developing next-generation networks with unprecedented
performance. Many implementations of existing QSC systems
employ Gaussian states as they can be easily realized using
current technologies. However, Gaussian states lack non-classical
properties necessary to unleash the full potential of QSC. This
motivates the use of non-Gaussian states, which have non-classical
properties beneficial for QSC. This paper establishes a theo-
retical foundation for QSC employing photon-varied Gaussian
states (PVGSs). The PVGSs are non-Gaussian states that can
be generated from Gaussian states using current technologies.
First, we derive a closed-form expression for the generalized
bilinear generating function of ordinary Hermite polynomials
and show how it can be used to describe PVGSs. Then, we
characterize PVGSs by deriving their Fock representation and
their inner product. We also determine equivalence conditions for
Gaussian states obtained from arbitrary permutations of rotation,
displacement, and squeezing operators. Finally, we explore the
use of PVGSs for QSC in several case studies.

Index Terms—Quantum sensing, quantum communication,
quantum information, non-Gaussian quantum states, quantum
state characterization.

I. INTRODUCTION

QUANTUM SENSING AND COMMUNICATION
(QSC) is a promising field that has the potential

to revolutionize information technologies, thus paving the
way for the development of next-generation networks with
unprecedented performance. Specifically, QSC underpins the
extension of classical information theory fields, such as coding
[1], [2], [3], [4], [5], [6], rate distortion [7], [8], [9], [10],
[11], [12], sensing [13], [14], [15], and communication [16],
[17], [18], [19] to the quantum domain. Quantum information
technologies exploit properties of quantum mechanics to
measure physical quantities of target systems and to exchange
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information. Such tasks are respectively referred to as
quantum sensing [20], [21], [22], [23], [24], [25], [26], [27]
and quantum communication [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44],
[45], [46], [47], [48], [49], [50], [51]. Many existing QSC
systems are implemented with light sources that generate
Gaussian quantum states. The use of Gaussian states is
motivated by well-established theoretical foundations [52],
[53], [54], [55], [56] and by the possibility of generating and
manipulating them using current technologies. Unfortunately,
Gaussian states do not possess several non-classical properties,
including strong non-Poissonian photon number distribution
and negative Wigner function [55], [56], [57], [58], [59], [60],
[61], [62], which are necessary to fully unleash the potential
of QSC. This calls for the use of non-Gaussian states, which
play an important role toward achieving quantum supremacy
[59], [60], [61]. However, the development of QSC systems
employing non-Gaussian states can be challenging as it
requires the implementation of complex optical processes,
the characterization of such non-Gaussian states, and the
establishment of theoretical foundations for QSC.

Non-Gaussian states are a broad class of quantum states
that exhibit non-Gaussian Wigner function [61]. In the class
of non-Gaussian states, photon-added quantum states (PAQSs)
[63], [64], [65], [66] and photon-subtracted quantum states
(PSQSs) [67], [68], [69], [70], [71] are of interest as they
can be realized in laboratory [72], [73], [74], [75], [76],
[77], [78] and their non-classical properties can be measured
[78], [79], [80], [81], [82], [83]. In particular, PAQSs and
PSQSs are obtained, respectively, by exciting and annihilating
photons from an initial state of the quantized electromagnetic
field. Recently, PAQSs and PSQSs have been unified in
terms of photon-varied quantum states (PVQSs), which are
obtained via photon-variation operations on initial quantum
states [84]; such a photon-variation unifies photon-addition
and photon-subtraction. When photon-variation operations are
performed on initial Gaussian states, the corresponding PVQSs
are referred to as photon-varied Gaussian states (PVGSs). An
important property of PVGSs is their generality, as they reduce
to Gaussian states under certain conditions. In the literature,
subclasses of PVGSs have been used for quantum sensing
[85], [86], [87], [88], [89], [90] and quantum communications
[91], [92], [93], [94], [95], [96], [97], [98], showing that their
degrees of freedom can be engineered to provide performance
improvements compared to Gaussian states.

However, the development of QSC with non-Gaussian states
is hindered by the lack of a theoretical foundation, which can
be used to determine performance benchmarks and to guide
the system design. The fundamental questions related to the
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design of QSC systems with non-Gaussian states are: (i) which
classes of non-Gaussian states are more suitable for QSC; and
(ii) how may such classes of states be characterized and then
employed in QSC systems? The answers to these questions
provide insights for the design of QSC systems with non-
Gaussian states. The goal of this paper is to introduce the
use of PVGSs for unleashing QSC. This paper establishes a
theoretical foundation for QSC with PVGSs, accommodating
for noise in state preparation, and shows how to exploit such
class of states for different QSC applications. In particular, the
key contributions are summarized as follows:

• we determine equivalence conditions for Gaussian states
obtained from arbitrary permutations of rotation, dis-
placement, and squeezing operators;

• we characterize PVGSs by deriving their Fock represen-
tation and their inner product using generalized Hermite-
Kampé de Fériet (H-KdF) polynomials; and

• we explore the use of PVGSs for QSC, utilize their
characterization to design QSC systems, and quantify
their performance in several case studies.

The remaining sections are organized as follows: Section II
recalls generalized H-KdF polynomials and derives a closed-
form expression for the generalized bilinear generating func-
tion of ordinary Hermite polynomials. Section III reviews the
theory of Gaussian states, derives equivalence conditions for
them, and defines PVGSs. Section IV determines the Fock
representation of PVGSs. Section V derives the inner product
of pure PVGSs. Section VI explores the use of PVGSs for
QSC and quantifies their performance in several case studies.
Finally, Section VII provides our conclusions.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors are
denoted by bold lowercase letters. Matrices and operators are
denoted by bold uppercase letters. For example, a random op-
erator and its realization are denoted by X and X , respectively.
Sets are denoted by upright sans serif font except for the sets of
natural numbers, integer numbers, real numbers, and complex
numbers, which are denoted by N, Z, R, and C, respectively.
For n ∈ Z, n = − for n < 0, and n = + for n ⩾ 0. For
x ∈ R, ⌊x⌋ denotes the greatest integer less than or equal to
x. For z ∈ C, |z| denotes its absolute value, ∠z ∈ (−π, π]
denotes its angle, z∗ denotes its complex conjugate, and
ı =

√
−1. For z ∈ C, the principal branch of the complex

square root is chosen such that
√
z = |z|1/2 exp{ı(∠z)/2} .

For a matrix M , [M ]i,j denotes the element in the i-th row
and j-th column. The adjoint of an operator is denoted by
(·)†. The annihilation and the creation operators are denoted
by A and A†, respectively. The set of density operators defined
on a Hilbert space H is denoted by D(H) . The identity
operator defined on a Hilbert space H is denoted by IH.
For two operators X and Y , the commutator is denoted
by JX,Y K− = XY − Y X . The rotation operator with
parameter ϕ ∈ R is Rϕ = exp{ıϕA†A}. The displacement
operator with parameter µ ∈ C is Dµ = exp

{
µA† − µ∗A

}
.

The squeezing operator with parameter ζ ∈ C is Sζ =
exp
{
1
2ζ(A

†)2 − 1
2ζ

∗A2
}

. The Pauli matrices X and Z are
X =

[
0 1
1 0

]
and Z =

[
1 0
0 −1

]
, respectively.

II. GENERALIZED HERMITE-KAMPÉ DE FÉRIET
POLYNOMIALS AND BILINEAR GENERATING FUNCTIONS

This section first recalls generalized H-KdF polynomials
and associated subclasses. Then, it derives a closed-form
expression for the generalized bilinear generating function of
ordinary Hermite polynomials [99], [100]. Such a bilinear
generating function is found to play a crucial role in the
characterization of PVGSs.

A. Definitions

Generalized H-KdF polynomials [101], [102], [103], [104],
also referred to as generalized Hermite polynomials, are a
class of polynomials that extend both two-variable H-KdF
polynomials [101], [102], [103], [104] and ordinary Hermite
polynomials [105], [106], [107].

Let x, y, z, u, t ∈ C and m,n ∈ N. The generalized H-KdF
polynomials are defined as

Hm,n(x, y; z, u |t) ≜ m!n!

min{m,n}∑
k=0

tk
Hm−k(x, y)Hn−k(z, u)

k!(m− k)!(n− k)!

(1)
where

Hp(ξ, w) ≜ p!

⌊p/2⌋∑
k=0

1

k!(p− 2k)!
ξp−2kwk (2)

with p ∈ N, are two-variable H-KdF polynomials. Notice that
ordinary Hermite polynomials are defined as

Hp(ξ) ≜ p!

⌊p/2⌋∑
k=0

(−1)k

k!(p− 2k)!
(2ξ)p−2k (3)

and are obtained from two-variable H-KdF polynomials in (2)
via the following relation

Hp(ξ) = Hp(2ξ,−1) . (4)

B. Generalized bilinear generating function

To facilitate the characterization of PVGSs developed in the
remainder of the paper, we define the function

G(x, y; r, s|α, β) ≜ 1

(1− α2)
r+s
2

M(x, y|α)

×Hr,s

(
2(x− yα)√

1− α2
,−1;

2(y − xα)√
1− α2

,−1

∣∣∣∣2β) (5)

where x, y, α, β ∈ C, α ̸= 1, r, s ∈ N, and M(x, y|α) is the
Mehler function defined as

M(x, y|α) ≜ 1√
1− α2

exp

(
2xyα− (x2 + y2)α2

1− α2

)
. (6)

The following lemma uses (5) to determine a closed-form
expression for the generalized bilinear generating function of
ordinary Hermite polynomials.

Lemma 1: Let x, y, t ∈ C, |t| < 1, and r, s ∈ N. The
generalized bilinear generating function of ordinary Hermite
polynomials has the following expression

G(x, y; r, s|t, t) =
∞∑

n=0

tn

n! 2n
Hn+r(x)Hn+s(y) . (7)

□
Proof: See Appendix I. ⊠
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Notice that for r = 0 and s = 0, (7) reduces to

G(x, y; 0, 0|t, t) =M(x, y|t) =
∞∑

n=0

tn

n! 2n
Hn(x)Hn(y)

which is the standard bilinear generating function of the
ordinary Hermite polynomials in (3).

III. GAUSSIAN AND PHOTON-VARIED GAUSSIAN STATES

This section reviews the theory of Gaussian states, derives
equivalence conditions for Gaussian states obtained from ar-
bitrary convention and permutation of unitary operators, and
defines the class of PVGSs.

A. Preliminaries on the single bosonic mode

Consider a single bosonic mode of the quantized electro-
magnetic field described within an infinite dimensional Hilbert
space H spanned by the complete orthonormal Fock basis
{|n⟩}n∈N, where |n⟩ is the Fock state with exactly n photons.
Let Q and P be the unbounded quadrature operators of
the quantized field that satisfy the canonical commutation
relation JQ,P K− = ıIH. Let A = (Q + ıP )/

√
2 and

A† = (Q−ıP )/
√
2 be the associated bosonic annihilation and

creation operators, respectively. The canonical commutation
relation for A and A† is JA,A†K− = IH. The eigenvalues and
eigenvectors of the self-adjoint operator A†A, called number
operator, are related by

A†A|n⟩ = n|n⟩
which shows that the mean number of photons of |n⟩ is
⟨n|A†A|n⟩ = n.

B. Gaussian states

Gaussian states are quantum states generated by applying
permutations of the unitary operators Rϕ, Dµ, and Sζ on
either the vacuum or the thermal state. Such operators can
be defined according to different conventions. This paper
considers the convention Rϕ = eıϕA

†A, Dµ = eµA
†−µ∗A,

and Sζ = e
1
2 ζ(A

†)2− 1
2 ζ

∗A2

. This choice is not restrictive
as Gaussian states defined according to arbitrary conventions
and permutations of rotation, displacement, and squeezing
operators can always be written according to any other con-
vention and permutation by properly modifying the operator
parameters. We define the most general Gaussian state as

Ξ(ϕ, µ, ζ, n̄) ≜ RϕDµSζΞthS
†
ζD

†
µR

†
ϕ ∈ D(H) (8)

where

Ξth ≜
∞∑

n=0

n̄n

(n̄+ 1)n+1
|n⟩⟨n| ∈ D(H) (9)

is the thermal state with intensity (mean number of photons)
n̄ given by the Planck law n̄ =

(
exp(ℏω/(kBT )) − 1

)−1
, in

which ω, T, ℏ, and kB are respectively the angular frequency
of the field, the absolute temperature, the reduced Planck con-
stant, and the Boltzmann constant. Notice that Ξ(ϕ, µ, ζ, n̄)
in (8) is mixed due to Ξth being mixed when n̄ > 0 . In some
contexts, Ξ(ϕ, µ, ζ, n̄) is also referred to as noisy Gaussian
state as Ξth in (9) can model thermal fluctuations impairing

the preparation of a pure Gaussian state. For n̄ = 0 (i.e., for
T → 0), Ξth reduces to the vacuum state and (8) results in
the density operator of a pure Gaussian state, namely

Ξ(ϕ, µ, ζ, 0) = RϕDµSζ |0⟩⟨0|S†
ζD

†
µR

†
ϕ . (10)

The ket representation of the pure Gaussian state in (10) is

|ϕ, µ, ζ⟩ ≜ RϕDµSζ |0⟩ ∈ H . (11)

In particular, (11) defines a pure Gaussian state according to
Caves’ definition [108]. An equivalent definition can be given
according to Yuen as [109]

|ϕ, µ, ζ⟩ = RϕSζDµλζ+µ∗νζ
|0⟩ (12)

where the parameters

λζ = cosh(|ζ|) (13a)

νζ = sinh(|ζ|) eı(∠ζ+π) (13b)

generate the linear transformation that maps bosonic operators
A,A† to new operators Â, Â† according to [110, Eq. (1.8)]

Â = λζA− νζA
† (14a)

Â† = λζA
† − ν∗ζ A . (14b)

Since λζ and νζ satisfy |λζ |2 − |νζ |2 = 1, (14) defines
a canonical Bogoljubov-Valatin transformation that preserves
the commutation relation, i.e., JÂ, Â†K− = JA,A†K− = IH.

An important property of Gaussian states is their closure
under rotational transformations. Indeed, from the Baker-
Campbell-Hausdorff formula [53], it can be found that

RϕDµSζ = Dµ̂Sζ̂Rϕ (15)

where
µ̂ = µeıϕ (16a)
ζ̂ = ζeı2ϕ . (16b)

Therefore, the mixed Gaussian state defined in (8) can equiv-
alently be written as

Ξ(ϕ, µ, ζ, n̄) = Dµ̂Sζ̂ΞthS
†
ζ̂
D†

µ̂ (17a)

= Ξ(0, µ̂, ζ̂, n̄) (17b)

which is obtained by using (15), (16), and by noticing that
the thermal state is invariant to rotations, i.e., RϕΞthR

†
ϕ =

Ξth. Analogously, a pure Gaussian state defined in (11) can
equivalently be written as

|ϕ, µ, ζ⟩ = Dµ̂Sζ̂ |0⟩ (18a)

= |0, µ̂, ζ̂⟩ (18b)

which is obtained by using (15), (16), and by noticing that
Rϕ|0⟩ = |0⟩. For pure Gaussian states defined according to
Yuen, see (12), the closure under rotational transformations is
preserved as

|ϕ, µ, ζ⟩ = RϕSζDµλζ+µ∗νζ
|0⟩

= Sζ̂Dµ̂λζ̂+µ̂∗νζ̂
|0⟩ . (19)

C. Equivalence conditions for Gaussian states

In general, Gaussian states can be obtained for any permuta-
tion of rotation, displacement, and squeezing operators, which
in turn can be defined according to different conventions. It
is therefore desirable to establish equivalence conditions for
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TABLE I: Equivalence conditions for Gaussian states defined according to different conventions and those used in this paper, which are
defined by (8) and (11) for mixed and pure Gaussian states, respectively. Coefficients λβ and νβ are given by (13).

Operator
Chain

Transformations of ϕ, µ, ζ Operator
Chain

Transformations of ϕ, µ, ζ

ϕ µ ζ ϕ µ ζ

R−
θ D−

α S−
β −θ −α −β D−

α S−
β R−

θ −θ −α e+ıθ −β e+ı2θ

R−
θ D−

α S+
β −θ −α +β D−

α S−
β R+

θ +θ −α e−ıθ −β e−ı2θ

R−
θ D+

α S−
β −θ +α −β D−

α S+
β R−

θ −θ −α e+ıθ +β e+ı2θ

R−
θ D+

α S+
β −θ +α +β D−

α S+
β R+

θ +θ −α e−ıθ +β e−ı2θ

R+
θ D−

α S−
β +θ −α −β D+

α S−
β R−

θ −θ +α e+ıθ −β e+ı2θ

R+
θ D−

α S+
β +θ −α +β D+

α S−
β R+

θ +θ +α e−ıθ −β e−ı2θ

R+
θ D+

α S−
β +θ +α −β D+

α S+
β R−

θ −θ +α e+ıθ +β e+ı2θ

R+
θ D+

α S+
β +θ +α +β D+

α S+
β R+

θ +θ +α e−ıθ +β e−ı2θ

R−
θ S−

β D−
α −θ −αλβ − α∗νβ −β S−

β R−
θ D−

α −θ −αλβ − α∗νβeı2θ −β e+ı2θ

R−
θ S−

β D+
α −θ +αλβ + α∗νβ −β S−

β R−
θ D+

α −θ +αλβ + α∗νβeı2θ −β e+ı2θ

R−
θ S+

β D−
α −θ −αλβ + α∗νβ +β S−

β R+
θ D−

α +θ −αλβ − α∗νβe−ı2θ −β e−ı2θ

R−
θ S+

β D+
α −θ +αλβ − α∗νβ +β S−

β R+
θ D+

α +θ +αλβ + α∗νβe−ı2θ −β e−ı2θ

R+
θ S−

β D−
α +θ −αλβ − α∗νβ −β S+

β R−
θ D−

α −θ −αλβ + α∗νβeı2θ +β e+ı2θ

R+
θ S−

β D+
α +θ +αλβ + α∗νβ −β S+

β R−
θ D+

α −θ +αλβ − α∗νβeı2θ +β e+ı2θ

R+
θ S+

β D−
α +θ −αλβ + α∗νβ +β S+

β R+
θ D−

α +θ −αλβ + α∗νβe−ı2θ +β e−ı2θ

R+
θ S+

β D+
α +θ +αλβ − α∗νβ +β S+

β R+
θ D+

α +θ +αλβ − α∗νβe−ı2θ +β e−ı2θ

D−
α R−

θ S−
β −θ −α e+ıθ −β S−

β D−
α R−

θ −θ −αλβe
ıθ − α∗νβeıθ −β e+ı2θ

D−
α R−

θ S+
β −θ −α e+ıθ +β S−

β D−
α R+

θ +θ −αλβe
−ıθ − α∗νβe−ıθ −β e−ı2θ

D−
α R+

θ S−
β +θ −α e−ıθ −β S−

β D+
α R−

θ −θ +αλβe
ıθ + α∗νβeıθ −β e+ı2θ

D−
α R+

θ S+
β +θ −α e−ıθ +β S−

β D+
α R+

θ +θ +αλβe
−ıθ + α∗νβe−ıθ −β e−ı2θ

D+
α R−

θ S−
β −θ +α e+ıθ −β S+

β D−
α R−

θ −θ −αλβe
ıθ + α∗νβeıθ +β e+ı2θ

D+
α R−

θ S+
β −θ +α e+ıθ +β S+

β D−
α R+

θ +θ −αλβe
−ıθ + α∗νβe−ıθ +β e−ı2θ

D+
α R+

θ S−
β +θ +α e−ıθ −β S+

β D+
α R−

θ −θ +αλβe
ıθ − α∗νβeıθ +β e+ı2θ

D+
α R+

θ S+
β +θ +α e−ıθ +β S+

β D+
α R+

θ +θ +αλβe
−ıθ − α∗νβe−ıθ +β e−ı2θ

Gaussian states obtained according to arbitrary definitions. To
this aim, for n ∈ Z, we introduce the following notation

n ≜

{
− for n < 0

+ for n ⩾ 0
(20)

which can be used to define the generalized unitary operators

Rr
θ ≜

{
e−ıθA†A for r = −1

eıθA
†A for r = +1

(21a)

Dd
α ≜

{
eα

∗A−αA†
for d = −1

eαA
†−α∗A for d = +1

(21b)

Ss
β ≜

{
e

1
2β

∗A2− 1
2β(A

†)2 for s = −1

e
1
2β(A

†)2− 1
2β

∗A2

for s = +1
(21c)

where r, d, s ∈ {−1,+1} determine the convention for rota-
tion, displacement, and squeezing operators, respectively. Let

P ≜
{
Rr

θD
d
αS

s
β ,R

r
θS

s
βD

d
α ,D

d
αR

r
θS

s
β ,D

d
αS

s
βR

r
θ ,

Ss
βR

r
θD

d
α ,S

s
βD

d
αR

r
θ

}
(22)

be the set of permutations of Rr
θ , Dd

α , and Ss
β defined in

(21). Then, generalized mixed and pure Gaussian states can
be respectively defined as1

1Notice that the Gaussian states defined in (8) and (11) are obtained by
using Gr ,d ,s

ϕ,µ,ζ = Rr
ϕD

d
µ Ss

ζ with r = +1, d = +1, and s = +1 .

Ξ
Gr ,d ,s

θ,α,β

(n̄) ≜ Gr ,d ,s
θ,α,β Ξth

(
Gr ,d ,s

θ,α,β

)† ∈ D(H) (23a)

|ψ
Gr ,d ,s

θ,α,β

⟩ ≜ Gr ,d ,s
θ,α,β |0⟩ ∈ H (23b)

where Gr ,d ,s
θ,α,β ∈ P . The equivalence conditions for generalized

Gaussian states and those defined according to (8) and (11)
are given by the Bogoljubov-Valatin transformations of ϕ, µ,
and ζ that satisfy

RϕDµSζΞthS
†
ζD

†
µR

†
ϕ = Gr ,d ,s

θ,α,β Ξth

(
Gr ,d ,s

θ,α,β

)†
(24a)

RϕDµSζ |0⟩ = Gr ,d ,s
θ,α,β |0⟩ (24b)

for all r, s, d ∈ {−1,+1} and Gr ,d ,s
θ,α,β ∈ P . Such transforma-

tions are listed in Table I that reports, for each convention
and permutation of rotation, displacement, and squeezing
operators, the transformations of ϕ, µ, and ζ that satisfy (24a)
and (24b). For example, consider the mixed Gaussian state

ΞD−
α S−

β R+
θ
(n̄) = D−

α S−
β R+

θ Ξth(R
+
θ )

†(S−
β )†(D−

α )† (25)

which is obtained from (23a) with Gr ,d ,s
θ,α,β = Dd

αS
s
βR

r
θ and

convention determined by r = +1, d = −1, and s = −1 .
From Table I, ΞD−

α S−
β R+

θ
(n̄) in (25) is equivalent to the Gaus-

sian state Ξ(+θ,−α e−ıθ,−β e−ı2θ, n̄) defined according to
(8). The same approach holds for pure Gaussian states by using
(23b) and (24b).
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Squeezing
Sζ

Displacement
Dµ

Rotation
Rϕ

Photon-variation
V k
t

Sζ |0⟩

SζΞthS
†
ζ

DµSζ |0⟩

DµSζΞthS
†
ζD

†
µ

RϕDµSζ |0⟩

RϕDµSζΞthS
†
ζD

†
µR

†
ϕ

|0⟩

Ξth

|ψ(k)

t
(ϕ, µ, ζ)⟩

Ξ
(k)

t
(ϕ, µ, ζ, n̄)

ζ µ ϕ {t, k}

Fig. 1: Block diagram representing the sequence of operations to obtain mixed PVGSs (dashed dotted box) and pure PVGSs (dashed box),
respectively defined in (27) and (29), for ζ, µ, ϕ, t, and k given as input parameters.

Remark 1: The equivalence conditions in Table I extend the
results of this paper to any kind of Gaussian states and PVGSs.
This is also important from the experimental perspective, as
optical setups generating Gaussian states may be easier to
implement for specific orders of rotation, displacement, and
squeezing operations than for others. □

D. Photon-varied Gaussian states

PVGSs are a subclass of PVQSs, which have been in-
troduced in [84] to unify PAQSs and PSQSs. PVGSs can
be implemented by exciting (photon-addition) or annihilat-
ing (photon-subtraction) photons from initial Gaussian states
of the quantized electromagnetic field. For PVGSs, photon-
addition and photon-subtraction operations are jointly de-
scribed by the photon-variation operator, which is defined as

Vt ≜

{
A for t = −1 (photon-subtraction)
A† for t = +1 (photon-addition) .

(26)

For a mixed Gaussian state Ξ(ϕ, µ, ζ, n̄) ∈ D(H) defined in
(8), the corresponding mixed PVGS is (see Fig. 1)

Ξ
(k)

t
(ϕ, µ, ζ, n̄) ≜

V k
t
Ξ(ϕ, µ, ζ, n̄)(V †

t
)k

N
(k)

t
(n̄)

∈ D(H) (27)

where k is the number of photon-variation operations (i.e., k
photon-additions or k photon-subtractions) and N (k)

t
(n̄) is the

associated normalization constant (photon-variation is a non-
unitary operation), which is given by

N
(k)

t
(n̄) = tr

{
V k
t Ξ(ϕ, µ, ζ, n̄)(V †

t
)k
}
. (28)

Analogously, for a pure Gaussian state |ϕ, µ, ζ⟩ ∈ H defined
in (11), the corresponding pure PVGS is (see Fig. 1)

|ψ(k)

t
(ϕ, µ, ζ)⟩ ≜ 1

N
(k)

t

V k
t |ϕ, µ, ζ⟩ ∈ H (29)

with associated normalization constant given by

N
(k)

t
=
√
⟨ζ, µ, ϕ|(V †

t
)kV k

t
|ϕ, µ, ζ⟩ . (30)

Remark 2: PVGSs extend multiple classes of quantum
states. In particular, PVGSs reduce to: (i) Gaussian states when
k = 0; (ii) photon-subtracted Gaussian states (PSGSs) [89]
when t = −1 and k > 0; and (iii) photon-added Gaussian
states (PAGSs) when t = +1 and k > 0 . Furthermore, when
n̄ → 0, ζ → 0, and k > 0, PSGSs reduce to coherent states

(i.e., eigenvectors of A), while PAGSs reduce to photon-added
coherent states [64], [86]. □

IV. FOCK REPRESENTATION OF PVGSS

The Fock representation is fundamental for assessing the
properties of quantum states. This section derives the Fock
representation of PVGSs.2

A. Mixed PVGSs
The Fock representation of a mixed PVGS is determined in

the following theorem.
Theorem 1: Let Ξ(k)

t
(ϕ, µ, ζ, n̄) ∈ D(H) be a mixed PVGS

obtained by performing k photon-variation operations speci-
fied by t on the initial mixed Gaussian state Ξ(ϕ, µ, ζ, n̄) ∈
D(H). The Fock representation of Ξ(k)

t
(ϕ, µ, ζ, n̄) is

Ξ
(k)

t
(ϕ, µ, ζ, n̄) =

∞∑
n,m=0

⟨n|Ξ(k)

t
(ϕ, µ, ζ, n̄)|m⟩|n⟩⟨m|

where the Fock coefficients ⟨n|Ξ(k)

t
(ϕ, µ, ζ, n̄)|m⟩ and the

normalization constant N (k)

t
(n̄) are respectively given by (31)

and (32), at the top of the next page, with

A = 1 + n̄+ (2n̄+ 1) sinh(|ζ|)2 (33a)
B = (2n̄+ 1) sinh(|ζ|) cosh(|ζ|)eı(∠ζ+2ϕ+π) (33b)

C =
n̄(n̄+ 1)

n̄2 + (n̄+ 1
2 )(1 + cosh(2|ζ|)) (33c)

D =
(n̄+ 1

2 ) sinh(2|ζ|)eı(∠ζ+2ϕ+π)

n̄2 + (n̄+ 1
2 )(1 + cosh(2|ζ|)) (33d)

E = eıϕ

[
µ
2 + (n̄+ 1

2 )µ cosh(2|ζ|)
n̄2 + (n̄+ 1

2 )(1 + cosh(2|ζ|))

− (n̄+ 1
2 )µ

∗ sinh(2|ζ|)eı∠ζ

n̄2 + (n̄+ 1
2 )(1 + cosh(2|ζ|))

]
(33e)

and min{n,m}− tk ⩾ 0 . In (32), the vector µϕ is given by

µϕ =
[
µeıϕ µ∗e−ıϕ

]T
(34)

whereas the matrix

Cs =

[Cs]1,1 [Cs]1,2

[Cs]2,1 [Cs]2,2


2For simplicity of notation, hereafter we drop the dependence on the

parameters characterizing the quantum states when it is clear from the context.
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⟨n|Ξ(k)

t
(ϕ, µ, ζ, n̄)|m⟩ = 1

N
(k)

t
(n̄)
√
A2 − |B|2

exp

(
−A|µ|

2
+ 1

2

[
B(µ∗e−ıϕ)2 +B∗(µeıϕ)2

]
A2 − |B|2

)

×
√

(m!n!)t(
(m− k)! (n− k)!

)t+1

(
D

2

)n−tk
2
((

D

2

)m−tk
2
)∗
Hm−tk,n−tk

(√
2E∗

(
√
D)
∗ ,−1;

√
2E√
D
,−1

∣∣∣∣∣ 2C|D|

)
(31)

N
(k)

t
(n̄) = (−1)kHk,k

([
XZµϕ

]
1
,−1

2

[
XZC−tZ

†]
1,1

;
[
XZµϕ

]
2
,−1

2

[
XZC−tZ

†]
2,2

∣∣∣∣−[XZC−tZ
†]

1,2

)
(32)

has the following elements

[Cs]1,1 =
1

2

[
(2n̄+ 1) cosh(2|ζ|)− s

]
(35a)

[Cs]1,2 =
1

2
(2n̄+ 1) sinh(2|ζ|)eı(2ϕ+∠ζ) (35b)

[Cs]2,1 =
1

2
(2n̄+ 1) sinh(2|ζ|)e−ı(2ϕ+∠ζ) (35c)

[Cs]2,2 =
1

2

[
(2n̄+ 1) cosh(2|ζ|)− s

]
(35d)

with s ∈ {−1,+1} . □
Proof: See Appendix II. ⊠

The normalization constant in (32) can also be used to deter-
mine the mean number of photons of mixed PVGSs through

tr
{
A†AΞ

(k)

t
(ϕ, µ, ζ, n̄)

}
=
N

(k+1)

t
(n̄)

N
(k)

t
(n̄)

− t+ 1

2
.

Remark 3: For k = 0, Ξ(0)

t
(ϕ, µ, ζ, n̄) = Ξ(ϕ, µ, ζ, n̄) and,

from (32), N (0)

t
(n̄) = 1 as required by the Gaussianity of

Ξ(ϕ, µ, ζ, n̄) . □
As we will see in Sec. VI, the Fock representation is

fundamental to designing QSC systems employing PVGSs.
In [111] and [112], an alternative characterization of quantum
states was established based on the number and distribution of
the roots of their stellar representation, which is connected to
their Husimi Q-function. Notice that the Husimi Q-function
of the mixed PVGS Ξ

(k)

t
(ϕ, µ, ζ, n̄) is obtained from (31) as

Q
(k)

t
(ξ;ϕ, µ, ζ, n̄) =

1

π

∞∑
n,m=0

⟨n|Ξ(k)

t
(ϕ, µ, ζ, n̄)|m⟩⟨ξ|n⟩⟨m|ξ⟩

where |ξ⟩ is a coherent state. Therefore, (31) can also be used
to characterize mixed PVGSs according to [111], [112].

B. Pure PVGSs

The Fock representation of a pure PVGS is determined in
the following theorem.

Theorem 2: Let |ψ(k)

t
(ϕ, µ, ζ)⟩ ∈ H be the pure PVGS ob-

tained by performing k photon-variation operations specified
by t on the initial pure Gaussian state |ϕ, µ, ζ⟩ ∈ H. The Fock
representation of |ψ(k)

t
(ϕ, µ, ζ)⟩ is given by (36), at the top of

the next page, with

Λµ,ζ =
√
sech(|ζ|)

× exp

(
−1

2

(
|µ|2 + (µ∗)2 tanh(|ζ|) eı(∠ζ+π)

))
(37)

ηµ,ζ =
µ+ µ∗ tanh(|ζ|) eı(∠ζ+π)√

2 tanh(|ζ|) eı(∠ζ+π)
. (38)

□
Proof: See Appendix III. ⊠
To complete the representation in (36), it is necessary to de-

termine the normalization constant N (k)

t
given by (30), which

is related to the inner product ⟨ψ(k)

t
(ϕ, µ, ζ)|ψ(k)

t
(ϕ, µ, ζ)⟩.

The derivation of N (k)

t
is given in the next section where

we derive the inner product of pure PVGSs.

V. INNER PRODUCT OF PURE PVGSS

Pure PVGSs can also be characterized based on their
orthogonality, which is of particular interest as it impacts the
performance of QSC. Therefore, as will be seen in Sec. VI,
the inner product is fundamental to designing and analyzing
QSC systems. This section derives the inner product of pure
PVGSs.

A. Generalized bilinear generating function for the inner
product of pure PVGSs

The following theorem establishes that the inner product of
two PVGSs defines a generalized bilinear generating function
of ordinary Hermite polynomials.

Theorem 3: Let |ψ(h)
s (φ, ξ, ω)⟩, |ψ(k)

t
(ϕ, µ, ζ)⟩ ∈ H be

two PVGSs obtained from the initial Gaussian states |φ, ξ, ω⟩,
|ϕ, µ, ζ⟩ ∈ H by performing h and k photon-variation opera-
tions, respectively. Without loss of generality, consider h ⩽ k.
The inner product ⟨ψ(h)

s (φ, ξ, ω)|ψ(k)

t
(ϕ, µ, ζ)⟩ defines the

generalized bilinear generating function of ordinary Hermite
polynomials given by (39) at the top of the next page. □

Proof: See Appendix IV. ⊠

B. Expressions for the inner product of pure PVGSs

The bilinear generating function associated with
⟨ψ(h)

s (φ, ξ, ω)|ψ(k)

t
(ϕ, µ, ζ)⟩ in (39) can be used to

obtain closed-form expressions for the inner product
of: (i) two PAGSs, for (s, t) = (+1,+1); (ii) a PAGS
and a PSGS, for (s, t) = (+1,−1); (iii) a PSGS and a
PAGS, for (s, t) = (−1,+1); and (iv) two PSGSs, for
(s, t) = (−1,−1). Let

ρ =

(√
tanh(|ω|) eı(∠ω+2φ+π)

)∗√
tanh(|ζ|) eı(∠ζ+2ϕ+π) .

(40)
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|ψ(k)

t
(ϕ, µ, ζ)⟩ = Λµ,ζ

N
(k)

t

∞∑
n=0

√
(n+ k)!

n! (n− k t−1
2 )!

(
tanh(|ζ|) eı(∠ζ+2ϕ+π)

2

)1
2

(
n−k t−1

2

)
Hn−k t−1

2
(ηµ,ζ) |n+ k

t+ 1

2
⟩ (36)

⟨ψ(h)
s (φ, ξ, ω)|ψ(k)

t
(ϕ, µ, ζ)⟩ =

Λ∗ξ,ωΛµ,ζ

N
(h)
s N

(k)

t

∞∑
n=max{hδs,1,kδt,1}

[√
(n+ hδs,−1)! (n+ kδt,−1)!

(n− hδs,1)! (n− sh)! (n− kδt,1)! (n− tk)!

×
((

tanh(|ω|) eı(∠ω+2φ+π)

2

)n−sh
2
)∗(

tanh(|ζ|) eı(∠ζ+2ϕ+π)

2

)n−tk
2

Hn−sh

(
η∗ξ,ω

)
Hn−tk(ηµ,ζ)

]
(39)

By specializing Theorem 3 for the aforementioned cases (i),
(ii), (iii), and (iv), the following corollaries are obtained.

Corollary 1: The inner product of two PAGSs
|ψ(h)

+ (φ, ξ, ω)⟩, |ψ(k)
+ (ϕ, µ, ζ)⟩ ∈ H, with h ⩽ k, is given by

(41) at the top of the next page. □
Proof: See Appendix V. ⊠
Corollary 2: The inner product of a PAGS |ψ(h)

+ (φ, ξ, ω)⟩ ∈
H and a PSGS |ψ(k)

− (ϕ, µ, ζ)⟩ ∈ H, with h ⩽ k, is given by
(42) at the top of the next page. □

Proof: See Appendix VI. ⊠
Corollary 3: The inner product of a PSGS |ψ(h)

− (φ, ξ, ω)⟩ ∈
H and a PAGS |ψ(k)

+ (ϕ, µ, ζ)⟩ ∈ H, with h ⩽ k, is given by
(43) at the top of the next page. □

Proof: See Appendix VII. ⊠
Corollary 4: The inner product of two PSGSs

|ψ(h)
− (φ, ξ, ω)⟩, |ψ(k)

− (ϕ, µ, ζ)⟩ ∈ H, with h ⩽ k, is given by
(44) at the top of the next page. □

Proof: See Appendix VIII. ⊠
Theorem 3 facilitates the derivation of the normalization

constant N (k)

t
of a pure PVGSs |ψ(k)

t
(ϕ, µ, ζ)⟩ ∈ H. Indeed,

from the normalization condition

⟨ψ(k)

t
(ϕ, µ, ζ)|ψ(k)

t
(ϕ, µ, ζ)⟩ = 1

N
(k)

t
is obtained by using (41) and (44) for t = +1 and

t = −1, respectively. Notice that the normalization constant
of a pure PVGS is related to the normalization constant in
(28) of a mixed PVGS through

N
(k)

t
= lim

n̄→0

√
N

(k)

t
(n̄) .

Remark 4: For k = 0, the initial Gaussian state is kept
untouched and, from (5), it can be easily verified that N (0)

t
= 1

as required by its Gaussianity. □
As we will see in Sec. VI, the inner product is fundamental

to deriving the ultimate performance limits of QSC with
PVGSs. Furthermore, it can also be used to determine the
Husimi Q-function of pure PVGSs and to characterize them
according to [111], [112]. In particular, the Husimi Q-function
of a pure PVGS |ψ(k)

t
(ϕ, µ, ζ)⟩ is found to be

Q
(k)

t
(ξ;ϕ, µ, ζ) = lim

ω→0

1

π

∣∣∣⟨ψ(0)
s (0, ξ, ω)|ψ(k)

t
(ϕ, µ, ζ)⟩

∣∣∣2 .
Therefore, when s and t are assigned, (41), (42), (43), and
(44) allow one to obtain Q(k)

t
(ξ;ϕ, µ, ζ).

VI. QUANTUM SENSING AND COMMUNICATION
VIA PVGSS

This section explores the use of PVGSs for various QSC
applications and evaluates their performance in several case
studies.

A. Quantum sensing with PVGSs
Quantum sensing, which is the process of measuring phys-

ical quantities of a target system by exploiting quantum
mechanical properties [23], [24], [59], is essential for a wide
plethora of applications including quantum illumination [21],
[22], [23], [85], quantum tomography [23], and quantum
metrology [23], [24], [25], [26], [113]. In such applications,
the quantity of interest is measured based on the interaction
between a quantum sensing system and the target system.
Specifically, after the interaction, the final state of the quantum
sensor contains information about the quantity of interest.
However, due to the stochastic nature of quantum interactions,
the final state cannot be deterministically identified. To address
this problem, we consider quantum state discrimination (QSD)
[41], [86], [114], [115], [116]. The sensing performance is
related to the discrimination error probability (DEP), which de-
pends on the quantum states used for sensing. In the literature,
QSD was considered for photon-added coherent states [86] and
PSGSs [89]. However, a complete characterization of QSD
with PVGSs has been missing until now. In the following, we
explore QSD with PVGSs. Let

S ≜
{
Ξ

(ki)

ti
(ϕi, µi, ζi, n̄); i = 1, 2, . . . ,M

}
⊂ D(H) (45)

be a set of M PVGSs, representing the initial states of a quan-
tum sensor, respectively with prior probability p1, p2, . . . , pM
satisfying

∑M
i=1 pi = 1 . The interaction between the sensor

and the target system can be modeled as the mapping

T : S −→ S̀
Ξ

(ki)

ti
(ϕi, µi, ζi, n̄) 7−→ Υ

(ki)

ti
(ϕi, µi, ζi, n̄) (46)

for i = 1, 2, . . . ,M , where S̀ ⊂ D(H) is the set of quan-
tum states resulting from the interaction between the initial
PVGSs and the target system. Therefore, the QSD problem is
formulated for quantum states in S̀. Let Υ(k)

t
(ϕ, µ, ζ, n̄) ∈ S̀

be the unknown random state of the quantum sensor after the
interaction, the QSD problem can be formulated as a M -ary
hypothesis testing problem where the i-th hypothesis is

Hi : Υ
(k)

t
(ϕ, µ, ζ, n̄) = Υ

(ki)

ti
(ϕi, µi, ζi, n̄)
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⟨ψ(h)
+ (φ, ξ, ω)|ψ(k)

+ (ϕ, µ, ζ)⟩ =
Λ∗ξ,ωΛµ,ζ

N
(h)
+ N

(k)
+

(ρ
2

)h(( tanh(|ω|) eı(∠ω+2φ+π)

2

)k−h
2
)∗
G
(
η∗ξ,ω, ηµ,ζ ; k, h|ρ, ρ−1

)
(41)

⟨ψ(h)
+ (φ, ξ, ω)|ψ(k)

− (ϕ, µ, ζ)⟩ =
Λ∗ξ,ωΛµ,ζ

N
(h)
+ N

(k)
−

(
tanh(|ζ|) eı(∠ζ+2ϕ+π)

2

)h+k
2

G
(
η∗ξ,ω, ηµ,ζ ; 0, h+ k|ρ, ρ

)
(42)

⟨ψ(h)
− (φ, ξ, ω)|ψ(k)

+ (ϕ, µ, ζ)⟩ =
Λ∗ξ,ωΛµ,ζ

N
(h)
− N

(k)
+

((
tanh(|ω|) eı(∠ω+2φ+π)

2

)h+k
2
)∗
G
(
η∗ξ,ω, ηµ,ζ ;h+ k, 0|ρ, ρ

)
(43)

⟨ψ(h)
− (φ, ξ, ω)|ψ(k)

− (ϕ, µ, ζ)⟩ =
Λ∗ξ,ωΛµ,ζ

N
(h)
− N

(k)
−

(ρ
2

)h( tanh(|ζ|)eı(∠ζ+2ϕ+π)

2

)k−h
2

G
(
η∗ξ,ω, ηµ,ζ ;h, k|ρ, ρ

)
(44)

for i = 1, 2, . . . ,M . The QSD performance is quanti-
fied by the DEP, i.e., the probability of incorrectly dis-
criminating Υ(k)

t
(ϕ, µ, ζ, n̄) . A case of particular interest is

the binary (M = 2) QSD, namely when Υ(k)

t
(ϕ, µ, ζ, n̄)

has to be discriminated among the binary set S̀ =

{Υ (k1)

t1
(ϕ1, µ1, ζ1, n̄),Υ

(k2)

t2
(ϕ2, µ2, ζ2, n̄)} .3 According to the

optimal binary discrimination strategy, the minimum achiev-
able DEP is given by [41]

P̆e =
1

2

(
1− ||∆||1

)
(47)

where || · ||1 = tr{
√
(·)†(·)} denotes the trace-norm and ∆ =

p2Υ
(k2)

t2
(ϕ2, µ2, ζ2, n̄)−p1Υ (k1)

t1
(ϕ1, µ1, ζ1, n̄) . Note that (47)

can be evaluated using the Fock representation of the states
Υ

(ki)

ti
(ϕi, µi, ζi, n̄), which is related to the Fock representation

(31) of the initial PVGSs Ξ
(ki)

ti
(ϕi, µi, ζi, n̄) . The ultimate

performance limit for binary QSD is obtained from (47) by
considering an ideal interaction, i.e., T = IH in (46)4, and
pure PVGSs, i.e., n̄ = 0. In this case, P̆e becomes

P̆e =
1−

√
1− 4p1p2

∣∣∣⟨ψ(k1)

t1
(ϕ1, µ1, ζ1)|ψ(k2)

t2
(ϕ2, µ2, ζ2)⟩

∣∣∣2
2

(48)

and depends on the inner product of the two pure PVGSs.
To evaluate the performance of PVGSs, we consider a

binary QSD problem for a scenario in which the interaction
between the quantum sensor and the target system is modeled
as a phase diffusion process, which can be used to describe
decoherence caused by a scattering process. Phase diffusion
relates Υ

(ki)

ti
(ϕi, µi, ζi, n̄) and Ξ

(ki)

ti
(ϕi, µi, ζi, n̄) via [117]

⟨n|Υ (ki)

ti
(ϕi, µi, ζi, n̄)|m⟩ = e−(n−m)2σ2

× ⟨n|Ξ(ki)

ti
(ϕi, µi, ζi, n̄)|m⟩ (49)

3Examples of quantum sensing applications that rely on binary QSD are
quantum illumination and signal detection. In the former, hypotheses are
associated with the presence or the absence of a target. In the latter, hypotheses
describe the detection of the signal state or the background state.

4All interactions T are (non-strictly) contractive in the trace-norm. There-
fore, the output states of any interaction will be closer in trace-norm distance
than the input ones, thus resulting in a worse P̆e. The ideal interaction
T = IH, however, is an isometry so it leads to achieving (48).

for i = 1, 2, where σ ⩾ 0 denotes the diffusion coefficient
shaping the exponential decay of off-diagonal Fock coeffi-
cients of initial PVGSs. Notice that, from (49), the Fock
representation of PVGSs derived in Sec. IV is fundamental
to determining the Fock representation of Υ (ki)

ti
(ϕi, µi, ζi, n̄) .

Fig. 2 shows the minimum DEP as a function of σ when
discriminating between a mixed PVGS and the thermal state
in the presence of phase diffusion. Notice that PVGSs always
outperform the Gaussian state. In particular, the performance
improves with the number of photon-variations and degrades
with the diffusion coefficient. For each PVGS setting, there
exists a threshold for σ above which P̆e approaches a hor-
izontal asymptote. This can be attributed to the fact that
when σ is large, the Fock coefficients outside the diagonal
are strongly attenuated by the exponential decay in (49).
Fig. 2 also shows that the performance improvement of PAGSs
over the Gaussian state is larger than that of PSGSs. This
is due to the fact that for squeezing ζ = 0.50, the benefits
of photon-subtraction vanish since PSGSs approach coherent
states, which are invariant to photon-subtractions. Therefore,
the use of PSGSs is recommended only for large squeezing.

Similar considerations hold for Fig. 3, which shows the
minimum DEP as a function of σ when discriminating between
two pure (n̄ = 0) PVGSs obtained by performing two photon-
variations and affected by phase diffusion. As in Fig. 2,
PVGSs always outperform Gaussian states, with significant
performance gain when discriminating between a PAGS and
a PSGS and, especially, between two PAGSs. Notice that,
despite n̄ = 0, P̆e is higher than that shown in Fig. 2. This
can be attributed to the fact that the two PVGSs, with intensity
np1 = 8 and np2 = 4, are less distinguishable compared to
the scenario discussed in Fig. 2.

Finally, notice that the results discussed in Fig. 2 and
Fig. 3 also show that PVGSs facilitate more reliable quan-
tum communications than Gaussian states. Indeed, classical
information, represented by digital symbols with known prior
probabilities, can be properly encoded into PVGSs propagating
through a quantum channel (modeled analogously to (46)) to
the destination. Then, the quantum receiver can perform QSD
to identify the transmitted PVGSs and retrieve the encoded
symbols. In this case, the DEP takes the role of the symbol
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Gaussian state

PSGS, k = 1

PSGS, k = 2

PAGS, k = 1

PAGS, k = 2

Fig. 2: Minimum DEP for the binary discrimination between a mixed
PVGS, affected by phase diffusion, and the thermal state as a function
of the diffusion coefficient σ. We set ϕ = 0, ζ = 0.50 and determine
µ such that each state has a mean number of photons np = 10 . The
thermal state has intensity n̄ = 0.10 and the prior probabilities are
p1 = p2 = 0.5 .

0 0.3 0.6 0.9 1.2 1.5
10−1

100

σ

P̆
e

Two Gaussian states

Two PSGS, k = 2

PAGS and PSGS, k = 2

Two PAGS, k = 2

Fig. 3: Minimum DEP for the binary discrimination between two pure
PVGSs, affected by phase diffusion, as a function of the diffusion
coefficient σ. We set ϕ1 = ϕ2 = 0, ζ1 = ζ2 = 0.25 and determine
µ1 and µ2 such that the two states have respectively a mean number
of photons np1 = 8 and np2 = 4 . PVGSs have k1 = k2 = k = 2
and the prior probabilities are p1 = p2 = 0.5 .

error probability. Therefore, P̆e shown in Fig. 2 and Fig. 3
can be respectively interpreted as the minimum symbol error
probability of an on-off keying quantum communication and of
a two-level quantum communication in the presence of phase
diffusion (e.g., caused by scattering in optical fibers).

B. Quantum key distribution with PVGSs
Quantum key distribution (QKD) [118], [119], [120], [121],

[122], [123], [124] is crucial for secure quantum communica-
tions and allows two parties, commonly referred to as Alice
and Bob, to generate and exchange theoretically secure crypto-
graphic keys by exploiting properties of quantum mechanics.
Widely adopted metrics to assess the QKD performance are
the transmission distance and secure key generation rate.

In discrete-variable QKD (DV-QKD) protocols, Alice ex-
ploits the particle nature of light to encode the information
into qubits, for example realized as the polarization of pho-
tons. The security of such protocols relies on the fact that
Alice employs an ideal single-photon light source. However,
practical implementations of such sources exhibit a non-zero
probability of generating undesired vacuum and multi-photon
radiations. Vacuum radiations reduce the secure key generation
rate as no information is transmitted, while multi-photon
radiations can be exploited by an eavesdropper Eve to extract
information about the key, thus harming the unconditional
security of QKD [125], [126], [127]. Such a problem is
exacerbated in scenarios with lossy quantum channels. This
calls for more robust protocol variants, such as the widely
adopted decoy-state protocol [128], [129], [130], [131]. The
idea behind the decoy-state protocol is that Alice employs
two light sources, namely signal source and decoy source,
with slightly different intensities so that the emitted radiations
cannot be distinguished by Eve. This strategy allows Alice
and Bob to detect Eve by comparing measured and theoretical
statistics of decoy radiations.

Developing QKD with the decoy-state protocol requires the
design of strong sub-Poissonian signal and decoy light sources.
However, in typical implementations using weak Gaussian
states, the secure key generation rate is limited by the high
vacuum emission probability. The use of PVGSs in DV-QKD
was explored for subclasses of PAGSs [92], [93], [94]. In the
following, we characterize DV-QKD with PVGSs and show
that using weak PVGSs can provide better QKD performance
than using weak Gaussian states with the same intensity. The
stochastic photon emission of a light source producing PVGSs
obeys the corresponding photon number distribution given by
the diagonal elements of the associated Fock representation,
namely (31) and (36) for mixed and pure PVGSs, respectively.
The photon number distribution of a mixed PVGS is given by

P
(k)

t ,n
(ϕ, µ, ζ, n̄) = ⟨n|Ξ(k)

t
(ϕ, µ, ζ, n̄)|n⟩ (50)

which describes how likely a light source producing PVGSs
emits radiations with n photons. In particular, (50) shows
that the stochastic photon emission can be engineered by
tuning ω, T (both determine n̄ through the Planck law), k,
ϕ, µ, and ζ. From (50), the probabilities of emitting vacuum,
single-photon, and multi-photon radiations are respectively
P

(k)

t ,0
(ϕ, µ, ζ, n̄), P

(k)

t ,1
(ϕ, µ, ζ, n̄), and

∑
n⩾2 P

(k)

t ,n
(ϕ, µ, ζ, n̄) .

Fig. 4 shows the photon number distribution of Gaussian
states and PVGSs with n̄ = 0, ϕ = 0, ζ = 0.20, and µ
chosen such that the states have a mean number of photons
np = 1.20 . In particular, the table reports the probabilities
of emitting vacuum, single-photon, and multi-photon radia-
tions, while the histogram represents the dominant terms of
the photon number distribution. Notice that photon-variation
operations reduce the vacuum emission probability in favor
of a higher single-photon probability, thus being beneficial to
the secure key generation rate. Note also that PAGSs with
k = 1 are strong sub-Poissonian with P (k)

+,1(ϕ, µ, ζ, n̄) = 0.89
due the photon-addition, which eliminates vacuum and reduces
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State k P
(k)

t,0
P

(k)

t,1

∑
n⩾2 P

(k)

t,n

Gaussian 0 0.39 0.28 0.33

PSGS 1 0.36 0.32 0.32

PSGS 2 0.37 0.30 0.33

PAGS 1 0 0.89 0.11
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0
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n

P
(k
)

t,
n
(ϕ
,µ

,ζ
,n̄

) Gaussian state

PSGS, k = 1

PSGS, k = 2

PAGS, k = 1

Fig. 4: Photon number distribution of a light source producing
Gaussian states and PVGSs with n̄ = 0, ϕ = 0, ζ = 0.20, and µ
chosen such that the states have np = 1.20. The table reports vacuum,
single-photon, and multi-photon emission probabilities; the histogram
depicts the dominant terms of the photon number distribution.
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Fig. 5: Lower bound on the secure key generation rate of the
decoy-state protocol as a function of the transmission distance using
Gaussian states and PVGSs. Signal states’ parameters are the same
used for the scenario in Fig. 4. Regarding decoy states’ parameters,
we set ϕ = 0, ζ = 0.20 and determine µ to guarantee np = 1.15 .

the multi-photon emission probability. Therefore, we expect
that PAGSs provide better QKD performance than PSGSs and
Gaussian states. However, the use of PAGSs with k ⩾ 2 is for-
bidden in order to have a non-zero single-photon probability.
Otherwise, PAGSs would emit only multi-photon radiations,
thus compromising the QKD security. This restriction does
not apply for PSGSs. Nonetheless, PSGSs with k = 2 exhibit
higher vacuum probability and lower single-photon probability
than PSGSs with k = 1.

To assess the performance of QKD employing PVGSs, we
evaluate the lower bound on the secure key generation rate of
the decoy state protocol with a single decoy as [130]

RL =
1

2

(
−Qg feh2(Re) + P̃

(k)

t ,1
Y1[1− h2(e1)]

)
(51)

where Qg is the overall gain for the signal source, fe is the
bidirectional error correction efficiency, h2(·) is the binary
entropy function, Re is the total error rate, P̃

(k)

t ,1
is the

single-photon emission probability for signal PVGSs, Y1 is
the detection probability conditioned to the event that Alice
sent a single-photon radiation, and e1 is the error rate as-
sociated with single-photon radiations. Consider a non-ideal
optical fiber-based quantum channel operating at wavelength
λ = 1550 nm with attenuation coefficient 0.2 dB/km, which
introduces photon-loss during propagation, and an imperfect
detection system with parameters given in [132].

Fig. 5 shows the lower bound on the secure key generation
rate of the decoy-state protocol with Gaussian states and
PVGSs as a function of the transmission distance. Notice
that, as we expected in light of considerations on Fig. 4,
PAGSs outperform both PSGSs and Gaussian states. This can
be attributed to the fact that the photon-addition operation
eliminates the vacuum emission and increases the single-
photon emission probability at the expense of the multi-photon
one. On the other hand, PSGSs perform slightly better than

Gaussian states due to the small reduction of the vacuum emis-
sion probability in favor of the single-photon one. However,
PSGSs with k = 1 perform better than PSGSs with k = 2 due
to the higher single-photon emission probability.

VII. CONCLUSION

This paper established a theoretical foundation for QSC em-
ploying PVGSs, accommodating for noise in state preparation.
We characterized PVGSs by deriving their Fock representation
and their inner product using generalized H-KdF polynomials.
We also determined equivalence conditions for Gaussian states
obtained from arbitrary permutations of rotation, displacement,
and squeezing operators. Finally, we explored the use of
PVGSs for QSC, utilized their characterization to design QSC
systems, and quantified their performance in several case
studies. Numerical results show that using PVGSs for QSC
can provide significant performance improvements compared
to Gaussian states. The findings of this paper pave the way
for the development of QSC with non-Gaussian states.

APPENDIX I
PROOF OF LEMMA 1

Let x, y, z, u, t ∈ C, |t| < 1, and m,n ∈ N. By substituting
(4) in (1) with y = −1 and u = −1, we have

Hm,n(2x,−1; 2z,−1 |t)

=

min{m,n}∑
k=0

(
m

k

)(
n

k

)
tkk!Hm−k(x)Hn−k(z) . (52)

Now, by using [133, Eq. (4.1)], the right-hand side of (7) can
be written as (53) at the top of the next page. Finally, (7)
follows by using (6), (52), and (5) in (53).
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∞∑
n=0

tn

n! 2n
Hn+r(x)Hn+s(y) =

1

(1− t2)
r+s+1

2

exp

(
2xyt− (x2 + y2)t2

1− t2

)

×
min{r,s}∑

k=0

(
r

k

)(
s

k

)
(2t)kk!Hr−k

(
x− yt√
1− t2

)
Hs−k

(
y − xt√
1− t2

)
(53)

APPENDIX II
PROOF OF THEOREM 1

Let Ξ(ϕ, µ, ζ, n̄) ∈ D(H) be the initial Gaussian state and
Ξ

(k)

t
(ϕ, µ, ζ, n̄) ∈ D(H) the corresponding PVGS obtained

by performing k photon-variation operations specified by t.
From (16) and (17), it follows

⟨n|Ξ(k)

t
(ϕ, µ, ζ, n̄)|m⟩ = ⟨n|Ξ(k)

t
(0, µ̂, ζ̂, n̄)|m⟩ . (54)

The definition of Vt in (26) yields

(V †
t
)k|n⟩ =

√(
n− k t−1

2

)
!(

n− k t+1
2

)
!
|n− tk⟩ . (55)

By using (55) in (54), we obtain (56) at the top of the next
page. Then, (31) follows by using [110, Eqs. (4.4), (4.23), and
(5.2)], (33), and (1) in (56). In particular, (33) is derived from
[110, Eqs. (2.9), (2.10), (4.9), (4.10), and (4.11)] and by noting
that, from (16), |µ̂| = |µ|, |ζ̂| = |ζ|, and ∠ζ̂ = ∠ζ + 2ϕ.

To complete the proof, we have to demonstrate (32). This
requires to derive the covariance matrix of the initial Gaussian
state. From (15), we can write

RϕDµSζ = DµeıϕRϕS|ζ|eı∠ζ (57a)
= DµeıϕRϕ+∠ζ

2
S|ζ|R−∠ζ

2
(57b)

where (57b) follows from (57a) by using Sζ = R∠ζ
2
S|ζ|R

†
∠ζ
2

,

RϕR∠ζ
2

= Rϕ+∠ζ
2

, and R†
∠ζ
2

= R−∠ζ
2

. By using (57b)
and the invariance of Ξth to rotational transformations,
Ξ(ϕ, µ, ζ, n̄) can equivalently be written as

Ξ(ϕ, µ, ζ, n̄) = DµeıϕRϕ+∠ζ
2
S|ζ|ΞthS

†
|ζ|R

†
ϕ+∠ζ

2

D†
µeıϕ

. (58)

Notice that the Gaussian state in (58) has the same form as
that in [52], thus allowing us to use the same approach to
derive its covariance matrix. Recall that, in the Heisenberg
picture, Rϕ and Sζ generate linear canonical Bogoljubov-
Valatin transformations of the bosonic operators A and A†.
Such transformations are described in the phase space through
the associated symplectic matrices. In particular, the symplec-
tic matrices associated with Rϕ+∠ζ

2
and S|ζ| are

Řϕ+∠ζ
2

=

cos(ϕ+ ∠ζ
2

)
− sin

(
ϕ+ ∠ζ

2

)
sin
(
ϕ+ ∠ζ

2

)
cos
(
ϕ+ ∠ζ

2

)
 (59)

Š|ζ| =

e|ζ| 0

0 e−|ζ|

 . (60)

Hence, by using (59) and (60), the covariance matrix of
Ξ(ϕ, µ, ζ, n̄) in (58) is

V =
(
n̄+

1

2

)
Řϕ+∠ζ

2
Š2|ζ|Ř

†
ϕ+∠ζ

2

. (61)

Finally, (32) follows by using [84, Eqs. (14), (22), and (25a)],
(61), and (1), with µϕ given by (34) and Cs given by (35).

APPENDIX III
PROOF OF THEOREM 2

Let |ψ(k)

t
(ϕ, µ, ζ)⟩ ∈ H be the pure PVGS obtained by

performing k photon-variation operations specified by t on
the initial pure Gaussian state |ϕ, µ, ζ⟩ ∈ H. From (16), (18),
and (29), we have

|ψ(k)

t
(ϕ, µ, ζ)⟩ = 1

N
(k)

t

V k
t Dµ̂Sζ̂ |0⟩ . (62)

The definition of Vt in (26) yields

V k
t |n⟩ =

√(
n+ k t+1

2

)
!(

n+ k t−1
2

)
!
|n+ tk⟩ . (63)

By expanding |ψ(k)

t
(ϕ, µ, ζ)⟩ in the Fock basis and using (63),

(62) can be written as

|ψ(k)

t
(ϕ, µ, ζ)⟩ = 1

N
(k)

t

∞∑
n=0

[
⟨n|Dµ̂Sζ̂ |0⟩

×
√(

n+ k t+1
2

)
!(

n+ k t−1
2

)
!
|n+ tk⟩

]
. (64)

By substituting p = n+ k(t− 1)/2 in (64), we obtain

|ψ(k)

t
(ϕ, µ, ζ)⟩ = 1

N
(k)

t

∞∑
p=0

[
⟨p− k

t− 1

2
|Dµ̂Sζ̂ |0⟩

×
√

(p+ k)!

p!
|p+ k

t+ 1

2
⟩
]
. (65)

Now, by using (19) and Sζ̂ = S†
−ζ̂

, we have that

⟨m|Dµ̂Sζ̂ |0⟩ = ⟨m|S†
−ζ̂

Dµ̂λζ̂+µ̂∗νζ̂
|0⟩ . (66)

In particular, (66) gives the m-th Fock coefficient of a Yuen’s
squeezed coherent state with displacement parameter µ̂λζ̂ +

µ̂∗νζ̂ and squeezing parameter −ζ̂ [109]. Finally, by using
(66) in (65) with m = p − k(t − 1)/2 as well as [109, Eq.
(3.23)], [134, Eq. (3.4)], (16), (37), and (38), we obtain (36).

APPENDIX IV
PROOF OF THEOREM 3

Let |ψ(h)
s (φ, ξ, ω)⟩, |ψ(k)

t
(ϕ, µ, ζ)⟩ ∈ H be the two PVGSs

obtained from the initial Gaussian states |φ, ξ, ω⟩, |ϕ, µ, ζ⟩ ∈
H, with h ⩽ k. By using (36), the inner product can be written
as in (67), at the top of the next page, where we used the
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⟨n|Ξ(k)

t
(ϕ, µ, ζ, n̄)|m⟩ = 1

N
(k)

t
(n̄)

√(
n− k t−1

2

)
!(

n− k t+1
2

)
!

(
m− k t−1

2

)
!(

m− k t+1
2

)
!
⟨n− tk|Dµ̂Sζ̂ΞthS

†
ζ̂
D†

µ̂ |m− tk⟩ (56)

⟨ψ(h)
s (φ, ξ, ω)|ψ(k)

t
(ϕ, µ, ζ)⟩ =

Λ∗ξ,ωΛµ,ζ

N
(h)
s N

(k)

t

∞∑
n,m=0

[√
(m+ h)! (n+ k)!

m! (m+ hδs,−1)!n! (n+ kδt,−1)!

((
tanh(|ω|) eı(∠ω+2φ+π)

2

)m+hδs,−1

2
)∗

×
(
tanh(|ζ|) eı(∠ζ+2ϕ+π)

2

)n+kδt,−1

2

Hm+hδs,−1

(
η∗ξ,ω

)
Hn+kδt,−1(ηµ,ζ)⟨m+ hδs,1|n+ kδt,1⟩

]
(67)

⟨ψ(h)
+ (φ, ξ, ω)|ψ(k)

+ (ϕ, µ, ζ)⟩ =
Λ∗ξ,ωΛµ,ζ

N
(h)
+ N

(k)
+

1

2h
(
1− ρ2

)k
2

((
tanh(|ω|) eı(∠ω+2φ+π)

2

)k−h
2
)∗

× ∂h

∂(η∗ξ,ω)
h

[
M
(
η∗ξ,ω, ηµ,ζ |ρ

)
Hk

(
η∗ξ,ω − ηµ,ζρ√

1− ρ2

)]
(68)

definition of the Kronecker delta to write δs,1 = (s + 1)/2,
δt,1 = (t+1)/2, δs,−1 = −(s−1)/2, and δt,−1 = −(t−1)/2 .

Now, define p = m+ hδs,1 and q = n+ kδt,1, from which
follow m+ hδs,−1 = p− h(δs,1 − δs,−1) = p− sh; m+ h =
p−h(δs,1−1) = p+hδs,−1; n+kδt,−1 = q−k(δt,1−δt,−1) =
q−tk; and n+k = q−k(δt,1−1) = q+kδt,−1. By using such
relations together with the orthonormality of the Fock states,
(39) follows from (67) after some algebra.

APPENDIX V
PROOF OF COROLLARY 1

By using (s, t) = (+1,+1), the substitution q = n −
max{hδs,1, kδt,1} = n−k, (7), and (5) in (39), we obtain (68).
By exploiting generalized Leibniz’s differentiation rule and the
recursive derivative formula for ordinary Hermite polynomials,
together with [135, Eqs. (40) and (41)], (1), (40), and (5), we
obtain (41). Notice that, as required in (7), (41) is well defined
as |ρ| < 1.

APPENDIX VI
PROOF OF COROLLARY 2

By using (s, t) = (+1,−1) and the substitution q = n −
max{hδs,1, kδt,1} = n − h in (39), we obtain, after some
algebra, the following bilinear generating function

⟨ψ(h)
+ (φ, ξ, ω)|ψ(k)

− (ϕ, µ, ζ)⟩

=
Λ∗ξ,ωΛµ,ζ

N
(h)
+ N

(k)
−

(
tanh(|ζ|) eı(∠ζ+2ϕ+π)

2

)h+k
2

×
∞∑
q=0

ρq

q! 2q
Hq

(
η∗ξ,ω

)
Hq+h+k(ηµ,ζ) . (69)

Then, by using (5), (40), and (7) in (69), we obtain (42). The
convergence of (69) to (42) is ensured as |ρ| < 1.

APPENDIX VII
PROOF OF COROLLARY 3

By using (s, t) = (−1,+1) and the substitution q = n −
max{hδs,1, kδt,1} = n − k in (39), we obtain, after some
algebra, the following bilinear generating function

⟨ψ(h)
− (φ, ξ, ω)|ψ(k)

+ (ϕ, µ, ζ)⟩

=
Λ∗ξ,ωΛµ,ζ

N
(h)
− N

(k)
+

((
tanh(|ω|) eı(∠ω+2φ+π)

2

)h+k
2
)∗

×
∞∑
q=0

ρq

q! 2q
Hq+h+k

(
η∗ξ,ω

)
Hq(ηµ,ζ) . (70)

Then, by using (5), (40), and (7) in (70), we obtain (43). The
convergence of (70) to (43) is ensured as |ρ| < 1.

APPENDIX VIII
PROOF OF COROLLARY 4

By using (s, t) = (−1,−1) and max{hδs,1, kδt,1} = 0
in (39), we obtain, after some algebra, the following bilinear
generating function

⟨ψ(h)
− (φ, ξ, ω)|ψ(k)

− (ϕ, µ, ζ)⟩

=
Λ∗ξ,ωΛµ,ζ

N
(h)
− N

(k)
−

(ρ
2

)h( tanh(|ζ|)eı(∠ζ+2ϕ+π)

2

)k−h
2

×
∞∑
q=0

ρq

q! 2q
Hq+h

(
η∗ξ,ω

)
Hq+k(ηµ,ζ) . (71)

Then, by using (5), (40), and (7) in (71), we obtain (44). The
convergence of (71) to (44) is ensured as |ρ| < 1.
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