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Abstract— We introduce surface ZZZY codes, a novel family
of quantum error-correcting codes designed for asymmetric
channels. Derived from standard surface codes through tailored
modification of generators, ZZZY codes can be decoded by the
minimum weight perfect matching (MWPM) algorithm with a
suitable pre-processing phase. The resulting decoder exploits
the information provided by the modified generators without
introducing additional complexity. ZZZY codes demonstrate
a significant performance advantage over surface codes when
increasing the channel asymmetry, while maintaining the same
correction capability over depolarizing channel.

Index Terms— Quantum error correction, surface codes,
MWPM decoder, asymmetric quantum channels.

I. INTRODUCTION

THE construction of a quantum computer presents a
significant hurdle due to the presence of errors, which

can quickly undermine quantum information integrity if not
managed effectively. Consequently, error correction is crucial
for ensuring the reliability of quantum computation [1], [2],
[3], [4]. Surface codes play a pivotal role in the architecture
of first-generation quantum computers, owing to their high
error thresholds, planar structure, locality, and availability of
efficient decoders [5], [6], [7], [8]. The most widely used
decoder for these codes is the Minimum Weight Perfect
Matching (MWPM) decoder [9], [10]. Quantum channels are
often modeled as memoryless and depolarizing, meaning that
the three Pauli errors X , Y , and Z are equally likely to
occur. However, asymmetries in the error event probabilities
can be present in real quantum devices, often due to
different relaxation and dephasing times [11], [12]. To protect
information flowing through asymmetric channels, one can use
ad-hoc asymmetric quantum codes or Calderbank, Steane, and
Shor (CSS) codes constructed from two classical codes with
different error correction capabilities, such as surface codes
with rectangular lattices [12], [13], [14]. Another possibility is
to modify the surface code generators to gain some asymmetric
error correction capabilities. An example of this approach are
the XZZX surface codes, designed to address scenarios where
qubit dephasing is the primary noise source [15]. In these
codes, each ancilla measures according to X in the horizontal
direction and Z in the vertical direction, leading to generators
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with both X and Z operators. For XZZX codes, the primal
and dual lattices can be decoded independently, allowing the
use of MWPM decoding. Another example of modifying the
surface structure is described in [16], where all Z generators
are replaced with Y generators. Due to these adjustments,
the resulting codes are no longer CSS. Additionally, belief-
propagation is needed with MWPM to better exploit all
information in circuit-level noise models considered [16].

In this letter, we propose new quantum codes, named
ZZZY surface codes, in which a few Pauli Y measurements
are incorporated at carefully selected locations within the
lattice. This approach aims to improve code performance over
asymmetric channels while considering decoder complexity.
To preserve the use of the MWPM decoder, while admitting
an additional low-complexity pre-processing phase, we choose
to insert at most one Y measurement per plaquette. The
resulting ZZZY surface code shows a marked improvement
in the correction of error patterns consisting of Z operators.
Throughout the letter, we will delve into the details of
the decoder, providing illustrative examples to support its
description.

II. PRELIMINARIES AND BACKGROUND

We indicate as [[n, k, d]] a quantum error correcting code
(QECC) with a minimum distance of d, encoding k logical
qubits into a codeword of n data qubits. Having a distance
d allows to correct all error patterns of weight up to t =
⌊(d − 1)/2⌋. The Pauli operators are denoted as X, Y ,
and Z. Employing the stabilizer formalism, each code is
characterized by n− k independent and commuting operators
Gi ∈ Gn, termed stabilizer generators or simply generators,
with Gn being the Pauli group on n qubits [2]. The codewords
are stabilized by the generators. The generators define
measurements on quantum codewords without disturbing the
original quantum state, obtained through the use of ancillary
qubits. For instance, if we have a generator Gi = Y1Z4Z6,
it means that its associated ancilla qubit Ai has to perform a Y
measurement on qubit 1 and Z measurements on qubit 4 and
6. Measuring the ancilla Ai, the output is 0 if the operator
acting on the codeword state commutes with Y1Z4Z6, and
1 if it anti-commutes. If any ancilla Ai returns 1, the decoder
detects the occurrence of an error operator, and intervenes to
find an operator capable of correcting it, ultimately restoring
a codeword state wherein all ancillas return 0.

Among stabilizer codes we focus on surface codes. These
have qubits arranged on a plane and require only local
interaction between qubits [17], [18], [19], [20], [21]. Logical
operators can be easily identified on surface codes: ZL (XL)
operator consists of a tensor product of Z’s (X’s) crossing
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Fig. 1. [[13, 1, 3]] ZZZY code. Circles stand for data qubits D, and
squares for ancillae A. The six edges depicted in red denote a modified
Y measurement with respect the standard surface code. X , Z, and Y
measurements are depicted in green, blue, red, respectively.

horizontally (vertically) the lattice. An important feature of
surface codes is that they can be decoded with the MWPM
algorithm [9]. This decoder builds a graph where vertices
correspond to error ancillas, and edges are weighted according
to the number of qubits between them. Finally, matching these
ancillas in pairs the MWPM can localize the errors.

To analyze quantum codes, it is common to assume that
errors occur independently and with the same statistics on the
individual qubits of each codeword. Moreover, qubit errors
can manifest as Pauli X , Z, or Y , with probabilities pX,
pZ, and pY, respectively. The overall probability of a generic
qubit error is p = pX + pZ + pY. Two possible models are
the depolarizing channel, where pX = pZ = pY = p/3,
and the phase-flip channel, characterized by p = pZ with
pX = pY = 0. We characterize an asymmetric channel by the
asymmetry parameter A = 2pZ/(p−pZ). By the means of this
parametrization, for A = 1 we have the depolarizing channel,
and for A → ∞ we have the phase-flip channel. In the case
of a symmetric code we can approximate the logical error rate
for p≪ 1 as [22]

pL ≃ (1− βt+1)
(

n

t + 1

)
pt+1 . (1)

where

βj = 1− 1
pj

j∑
i=0

(
j

i

)
pi
Z

j−i∑
ℓ=0

(
j − i

ℓ

)
pℓ
X pj−i−ℓ

Y fj(i, ℓ) (2)

is the fraction of errors of weight j that the decoder is able to
correct, while fj(i, ℓ) is the fraction of errors of weight j, with
i Pauli Z and ℓ Pauli X operators, which are not corrected.

III. QUANTUM ZZZY CODES

In this section we propose the ZZZY codes, belonging to
the family of topological codes. These are obtained starting
from the lattice of a non rotated surface code, by modifying
some of the measurements of the generators, as shown in
Fig. 1. We emphasize that these codes are still planar and they
require only local connectivity between qubits. Moreover, for
the decoding it is possible to employ the MWPM algorithm,
with the addition of some conditional statements.

In the case of standard squared surface codes, each generator
is responsible for only one kind of Pauli error (e.g., X or Z),
since they are composed by either all X or all Z operators.
As a result, such codes have a balanced error correction

capability and perform best over symmetric channels. The
basic idea behind ZZZY codes is to sacrifice some X error
correction capability to enhance the performance of the code
over channels where phase flip errors are the most probable.
Hence, we substitute a Z with a Y measurement for a subset
of generators. For instance, we design the [[13, 1, 3]] ZZZY
code with the following generators

G1 = X1X2X4 G2 = X2X3X5

G3 = Y1Z4Z6 G4 = Z2Z4Z5Y7 G5 = Y3Z5Z8

G6 = X4X6X7X9 G7 = X5X7X8X10

G8 = Z6Z9Y11 G9 = Y7Z9Z10Z12 G10 = Z8Z10Y13

G11 = X9X11X12 G12 = X10X12X13

which are shown in Fig 1. Hereafter, we will denote these
modified generators as ZY generators. To build larger ZZZY
codes, it is sufficient to start from the corresponding [[n, k, d]]
surface code, as follows. Considering data qubits only on odd
rows, let assign two indices i and j to each data qubit in the
lattice, where i, j = 0, . . . , d−1, denoting the row and column
of the respective qubit q. Some examples of these labels are
depicted in Fig. 1. Next, transform the Z measurements on
qubits q2ℓ,0 and q2ℓ,d−1, with ℓ = 0, . . . , d − 1, into Y
measurements. Finally, convert the Z measurements on qubits
q2ℓ+1,1 and q2ℓ+1,d−2 to Y measurements. For the particular
case d = 3, depicted in Fig. 1, d − 2 = 1 and then q2ℓ+1,1

and q2ℓ+1,d−2 is the same qubit, for each ℓ. This leads to
3(d − 1) = 6 modifications to X generators when d = 3.
It is easy to show that, when d > 3, the procedure leads to
4(d − 1) modifications of X generators. Note that the dual
construction, where some X are replaced by Y to improve
the error correction capability of bit flip errors, can be achieved
in a similar manner.

In the following, we will examine the logical operators
of the [[13, 1, 3]] ZZZY code to elucidate the advantage it
attains in the presence of Z channel errors. The number of
logical operators of each weight can be computed starting
from Mac Williams identities as shown in [22]. Specifically,
for the [[13, 1, 3]] using the approach in [22] we find that the
undetectable error weight enumerator polynomial is

L(z) = 6 z3 + 24 z4 + 75 z5 + 240 z6 + 648 z7 + 1440 z8

+ 2538z9 + 3216z10+2634z11+1224z12+243z13 .

(3)

Since this code has distance three, its asymptotic logical error
rate depends on the fraction of errors of weight j = 2 that it is
able to correct. In particular, it can be shown that Pauli errors
of weight j = 2 can cause logical operators of weight w =
3 and w = 4. From (3), we see that the [[13, 1, 3]] ZZZY code
has six logical operators with w = 3 and 24 logical operators
with w = 4. Since this code is tailored for channels where
phase flip errors occur more frequently, we focus on logical
operators composed by only Z Pauli operators. Referring to
Fig 1, some examples of logical operators with w = 3 and
w = 4 are Z1Z2Z3 and Z1Z2Z5Z8, respectively. The first
one can be caused by three error patterns: Z1Z2, Z1Z3, and
Z2Z3. In the case of standard surface codes, where these
errors are detected exploiting only information coming from
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Algorithm 1 ZZZY_Decoder

input : s, syndrome
H , matrix of the generators
nZY, nX, number of ZY and Xgenerators

output: ê, vector of the estimated channel errors

init q to all ones, vector of the weights associated to
each data qubit of the lattice

q ← update_weights(s, q, H, nZY, nX)
D ← compute_distance(s), matrix of the
distances between switched on ancilla

ê← MWPMX(D)
forall i ∈ {1, . . . , nZY} do

forall j ∈ {1, . . . , n} do
if ê(j) = 1 then

if H(i, j) = 1 and H(i, j + n) = 1 then
s(j)← 1− s(j)

ê← MWPMZ(D)

X generators, whenever one of these patterns occurs, the
MWPM is not able to recover it. For instance, if the channel
introduces a Z1Z2 error, the decoder will apply a Z3, realizing
the correspondent logical operator. However, ZZZY codes
have additional information coming from ZY generators.
Indeed, in case of a Z1Z2 occurs, ancilla qubit A3, which
performs Y1Z4Z6 measurements, anticommutes with the error
and it is switched on during the error correction. A similar
reasoning can be done also for logical operators with w = 4.
Specifically, these operators are due to

(
4
2

)
− 2 = 4 pattern of

errors of weight two: Z1Z5, Z2Z8, Z1Z8, and Z2Z5. This
is because Z1Z2 causes a logical operator with w = 3, while
Z5Z8 is always corrected. In particular, the decoding error
is due to the fact that the MWPM is not able to distinguish
between Z1Z5 and Z2Z8 (Z1Z8 and Z2Z5) since they give
the same syndrome. However, a Z1Z5, contrary to Z2Z8,
would switch on A3, which can be exploited to identify the
correct channel error. The same can be said for each of the
ZL logical operators with w = 3, 4. Hence, in the [[13, 1, 3]]
ZZZY code, all Z error patterns of weight t+1 are corrected,
except for one: Z6Z8, resulting in β2 = 0.987. This cannot
be corrected as it results in the same syndrome as the error
Y7.

IV. ZZZY MINIMUM WEIGHT PERFECT MATCHING

In decoding ZZZY codes, we must adapt the standard
MWPM algorithm to leverage the insights gained from
Y measurements. Notably, as surface codes fall under the
category of CSS codes, the decoding process for Z generators
operates independently from that for X generators [23].
Consequently, the MWPM can be divided into two phases:
MWPMX, focusing solely on X generators, followed by
MWPMZ for the Z stabilizers. As detailed in Section III,
ZY generators offer insights into certain Z errors. However,
without careful handling, they can erroneously trigger X
error detections. Take, for example, Fig 1, where a Z1 error
activates ancillas A1 and A3. Neglecting to deactivate ancilla

Algorithm 2 update_weights

input : s, q, H, nZY, nX

output: q

forall i ∈ {1, . . . , nZY} do
forall j ∈ {1, . . . , n} do

if s(i) = 1 then
if H(i, j) = 1 and H(i, j + n) = 1 then

q(j)← 0.9

if s(i) = 0 then
if H(i, j) = 1 and H(i, j + n) = 1 then

q(j)← 1.1

init A to the empty set
forall i ∈ {1, . . . , nZY} do

if s(i) = 1 then
A ← A∪ ni

forall j ∈ g(h(ni)) do
if s(j) = 1 then
A ← A \ ni

forall i ∈ A do
forall j ∈ {1, . . . , n} do

if H(i, j) = 1 and H(i, j + n) = 1 then
q(j)← −0.1

A3 before MWPMZ would falsely attribute an additional
X1 error. To address this, we introduce a preprocessing step
to both MWPMX and MWPMZ. The algorithm’s complete
description utilizes binary representation for the generators
(i.e., for the parity check matrix H) and the estimated channel
error vector ê. For instance, in a code with n qubits, the
matrix H comprises 2n columns, with each row representing
a generator. The first n columns contain a 1 where the
corresponding generator features a Z or Y Pauli measurement,
while the second n columns contain a 1 if the generators
measure X or Y [2]. We also use the first nZY rows to
describe the ZY generators. The decoder for ZZZY codes
is presented as Algorithm 1 above. Excluding the function
update_weights (to be introduced later), the algorithm
ensures the minimum distance for ZZZY surface codes. After
evaluating the syndrome, the function compute_distance
utilizes Dijkstra’s algorithm to find the shortest paths on
a graph, where vertices correspond to switched on ancillas
and edges’ weights are the sums of the underlying qubit
weights. Subsequently, via MWPMX, pairs of X ancillas
are connected, producing the estimated Z channel errors.
Next, the parity of all ancillas measuring Y operators on
qubits involved in Z errors is inverted. Finally, MWPMZ

also allows for finding the X channel errors. The algorithm
corrects, therefore, all patterns of weight up to t. Further,
we would like to correct as much as possible Z errors of
weight t + 1. To this aim we can exploit the information
coming from ZY generators. Specifically, after evaluating
the syndrome, if some of the ZY generators are activated,
we modify the weights of the edges of the MWPM graph using
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Fig. 2. Decoding of the [[13, 1, 3]] ZZZY code. Qubits affected by Z errors
are highlighted in orange. Switched on ancillas are depicted in yellow. Each
qubit i is associated with the corresponding weight q(i) resulting from the
function Update_weights.

the function update_weights. Since we are considering
minimum weight decoders, error patterns of weight t+1 could
trigger only logical operators of weight d and d + 1 (if,
as assumed, d is odd). Let us start improving the correction
in case of possible logical operators of weight d + 1. We can
achieve this if we apply the following procedure: if one of
the generators performing a Y measurement on the i-th qubit
is activated, the weight q(i) of the corresponding edge is
modified to a number slightly smaller than one, e.g., q(i) =
0.9. Moreover, if a generator performing a Y measurement
on the i-th qubit is switched off, the weight q(i) is set to
a number slightly larger than one, e.g., q(i) = 1.1. In this
way, during the MWPMX, the decoder is pushed to choose
paths where the ZY generators are switched on. If the i-
th qubit is actually affected by a Z Pauli error, this strategy
allows the decoder to choose correctly between different paths
composed by the same number of edges. We elucidate this
with an example reported in Fig 2a. In particular, if Z errors
occur on data qubits D6 and D3, ZY ancilla A5 is switched
on. If we directly apply MWPMX, the decoder has to choose
between three error patterns of the same weight: Z3Z6, Z2Z4,
and Z5Z7. This ambiguity could lead to an error with high
probability. However, with our modification, the weight of
qubit D3 is set to 0.9, guiding MWPMX to select it for
correction. Let us now focus on logical operators of weight d.
In this case, if an error pattern with t + 1 Pauli Z operators
occurs activating a ZY generator, we would like the decoder
to select a path composed of a higher number of qubits
if certain conditions are met. In doing so, we need to be
sure that we are dealing with a potential logical operator of
weight d. For this reason, if a ZY generator measuring a
Y operator on qubit i-th is activated, and there are no X
generators activated in the rows of the lattice adjacent to the
one of qubit i-th, q(i) is set to a small negative number, e.g.,
−0.1, to force its selection. To formalize the algorithm, let
us define h(·) as a function that takes as input the index of
a ZY generator and returns the index ℓ of the qubit under
Y measurement. Additionally, we define the function g(·),
which takes as input a qubit index and returns a list of X
generator indexes located in the row above and in the row
below the input qubit. This function can be implemented
efficiently using modulo operations. An example is depicted in
Fig 2 b. Specifically, Z errors have occurred on qubits D2 and
D3. Applying the function h(·) to A5, we obtain h(5) = 3,
representing D3. Consequently, g(3) returns {6, 7}.The list has
only two elements due to the fact that D3 is on a boundary.

Fig. 3. Logical error probability vs. channel asymmetry for a physical error
rate p = 0.001. Surface, XZZX, and ZZZY codes with d = 3 and d = 5.

Since ancillas A6 and A7 are both deactivated, the weight
of qubit data D3, measured by A5, is set to −0.1, ensuring
the correction of the error. On the other hand, without our
Update_weights, the MWPMX decoder would apply a
Z1 correction, leading to the logical operator Z1Z2Z3. In the
worst case scenario, for each of the 4(d− 1) ZY generators
we could perform an assignment based on two conditional
statements. In practice, this can be easily implemented in
hardware by means of simple logic gates, resulting in a pre-
processing complexity of O(1).

Lemma 1: Given an [[n, k, d]] ZZZY code, for d > 3, the
fraction of Z errors of weight t+1 that cannot be corrected by
the ZZZY decoder over a phase flip channel is d

(
d−2
t+1

)
/
(

n
t+1

)
Proof: Over a phase-flip channel, all errors of weight

t + 1 that can cause logical operators of weight 2t +
2 are corrected. Indeed, the decoder has to choose between
two solutions composed of the same number of qubits.
Hence, by modifying the weight of the paths using the
function update_weights, the actual error pattern is
always identified. In case the t + 1 errors occur on the same
row of the lattice, they can cause a logical operator of weight
2t+1. To correct these errors, it is necessary that at least one
of them occurs on a qubit measured by one of the two ZY
generators, since the ZZZY decoder has to set the weight of
the corresponding qubit to −0.1. Hence, the uncorrected error
patterns for each of the d rows are

(
d−2
t+1

)
. Finally, the total

number of Z error patterns of weight t + 1 is
(

n
t+1

)
. □

Note that, as the code distance increases, the fraction of
errors of weight t+1 that cannot be corrected becomes smaller.

V. NUMERICAL RESULTS

In this section we numerically evaluate the performance
of ZZZY codes with the proposed decoder, providing a
comparison with surface and XZZX codes under MWPM
decoding. In Tab. I we report the fraction of non-correctable
errors for each error class fj(i, ℓ), evaluated by exhaustive
search. We observe that, for the ZZZY codes, the values of
f2(2, 0) (i.e., the ZZ class) and f3(3, 0) (i.e., the ZZZ
class) are the lowest. This shows that ZZZY codes have the
best Z error correction capability. Exploiting these tabular
values, together with (1) and (2), we can evaluate the code
performance. To this aim, in Fig. 3 we report the logical error
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TABLE I
FRACTION OF NON-CORRECTABLE ERROR PATTERNS fj(i, ℓ)

Fig. 4. Logical error probability pL vs. physical error rate p. XZZX, and
ZZZY codes with d = 3, d = 5, and d = 7. Asymmetry A = 100.

rates of surface and ZZZY codes with d = 3 and d = 5 for a
physical error rate p = 0.001, varying the channel asymmetry.
We note that ZZZY codes, while exhibiting comparable error
correction capabilities with respect to surface codes over a
depolarizing channel (A = 1), show a significant performance
advantage as the channel’s asymmetry increases (A > 1). For
A < 1 we can just use the dual version of the ZZZY code,
which will give the same performance as for A > 1. Finally,
Fig. 4 shows, for A = 100, a comparison among the codes
when varying the physical error rate. We observe that for high
physical error rate the advantage of ZZZY codes over XZZX
codes diminishes.

VI. CONCLUSION
We have introduced a novel family of QECC, specifically

designed for asymmetric channels and named ZZZY codes.
These codes are derived from standard surface codes through
the modification of certain generators. Furthermore, we have
presented a variant of the MWPM decoder, tailored for
these codes. Remarkably, this decoder effectively leverages
the augmented information from the modified generators
without adding complexity. By employing our variant of
the MWPM decoder, the ZZZY codes exhibit a significant
performance advantage compared to surface codes over
asymmetric channels.
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