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Abstract—Quantum communication systems exchange infor-
mation between a source and a destination by encoding such
information into quantum states according to modulation tech-
niques. The design of quantum modulation techniques, including
quantum quadrature amplitude modulation (QAM), requires
choosing and characterizing quantum states. This paper explores
the use of non-Gaussian photon-added Gaussian states (PAGSs)
for quantum QAM communications. First, we characterize pure
PAGSs in the Fock space and derive a closed-form expression
for their inner product. Then, we develop a quantum QAM
technique employing PAGSs. In particular, we show how to
construct quantum QAM constellations of PAGSs. Finally, we
evaluate the performance of the developed quantum QAM
technique with PAGSs, when a square root measurement (SRM)
receiver is employed, and compare such performance with that
of existing coherent states. Results show that PAGSs can provide
a performance gain with respect to coherent states.

Index Terms—Quantum communications, quantum constella-
tion, photon-added Gaussian state, quantum receiver.

I. INTRODUCTION

Quantum communications is a promising area of quantum
information theory that relies on the exploitation of quantum
mechanical laws to convey information through a quantum
channel [1]–[7]. In a quantum communication system, clas-
sical information is encoded into the variation of physical
characteristics of quantum states according to a modulation
technique, thus determining the quantum constellation. The
states of the quantum constellation are then used to con-
vey information to the destination. Information carried by
the quantum states is retrieved by employing a quantum
receiver that discriminates which states were transmitted [8]–
[13]. Therefore, the communication performance, in terms of
symbol error probability (SEP), is related to the discrimination
error probability. Determining the SEP is a hard task since
it depends on the adopted modulation technique, states of
the constellation, decoherence effects introduced by a noisy
quantum channel, and the employed quantum receiver.

In the literature, quantum pulse position modulation (PPM)
[7], [13]–[16] and phase shift keying (PSK) [7], [17]–[21]
techniques have been studied for constellations of arbi-
trary Gaussian states, while quadrature amplitude modulation

(QAM) only for constellations of coherent states [7], [20]–
[23]. Recently, it has been shown for PPM that constellations
of non-Gaussian states can provide better performance than
Gaussian states [24], [25]. Both PPM and PSK constellations
are shown to exhibit geometrically uniform symmetry (GUS),
while QAM constellations generally do not. Optimal quantum
receivers, that can achieve the minimum error probability, are
known only for constellations that exhibit either a high mean
number of photons [9] or GUS [16], [26]–[29]. Constellations
without GUS require to employ sub-optimal receivers that do
not achieve the minimum error probability. Except for PPM,
quantum modulation techniques with constellations of non-
Gaussian states have not been explored yet.

This paper explores the use of pure non-Gaussian photon-
added Gaussian states (PAGSs) for quantum QAM commu-
nications. The key contributions of this paper can be sum-
marized as follows: (i) we derive the Fock representation and
the inner product of pure PAGSs; (ii) we develop the quantum
QAM technique employing PAGSs; and (iii) we evaluate the
SEP of quantum QAM communications with PAGSs.

The remaining sections are organized as follows: Section II
introduces the quantum QAM technique and provides some
useful results on Hermite polynomials. Section III derives the
Fock representation and the inner product of pure PAGSs.
Section IV develops quantum QAM employing PAGSs. Sec-
tion V evaluates the SEP of the quantum QAM with PAGSs,
when a square root measurement (SRM) receiver is employed,
and compares such SEP with that of existing coherent states.
Finally, Section VI gives our conclusions.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Operators
are denoted by uppercase letters. For example, a random vari-
able and its realization are denoted by x and x, respectively;
an operator is denoted by X . The sets of complex numbers
and of natural numbers are denoted by C and N, respectively.
For a set A: |A| denotes the cardinality, i.e., the number of
elements, of A. For z ∈ C: |z| denotes the absolute value;
z∗ denotes the complex conjugate; and ı =

√
−1. The adjoint

of an operator is denoted by (·)†. The annihilation and the
creation operators are denoted by A and A†, respectively. The
identity operator defined on a Hilbert space H is denoted by
IH. For two operators X and Y , the commutator is denoted979-8-3503-1090-0/23 © 2023 IEEE
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by JX,Y K− = XY − Y X . The displacement operator with
parameter µ ∈ C is Dµ = exp

{
µA† − µ∗A

}
. The rotation

operator with parameter ϕ ∈ R is Rϕ = exp{ıϕA†A}.
The squeezing operator with parameter ζ ∈ C is Sζ =
exp

{
1
2ζ(A

†)2 − 1
2ζ

∗A2
}

. The squeezing parameter ζ ∈ C
can equivalently be written as ζ = reıθ, with r ⩾ 0 and
−π < θ ⩽ π.

II. PRELIMINARIES

This section introduces the quantum QAM technique and
presents some known results on Hermite polynomials that are
used in the rest of the paper.

A. Quantum Quadrature Amplitude Modulation

In a quantum communication system, classical information
is encoded into the variation of suitable characteristics of
quantum states. Such states are then used for conveying
the information to a destination. In QAM systems, classical
information is represented with symbols in the alphabet

A(∆)
M =

{
ai,j = ∆(pi + ı qj), pi, qj ∈ AL

}
(1)

where AL = {ak = 2k − L− 1, k = 1, 2, . . . , L} and L =
2n, with n ⩾ 1 integer. Symbols ai,j have prior probabil-
ities P{a = ai,j} such that

∑L
i,j=1 P{a = ai,j} = 1. In (1),

|A(∆)
M | =M = L2, and ∆ is related to the constellation energy

and represents the spacing of the symbols in the complex
plane. The constellation of a quantum M -QAM system is

C(∆)
M =

{
|ψi,j⟩ ∈ H : |ψi,j⟩ = |ψ(ai,j)⟩ , ai,j ∈ A(∆)

M

}
(2)

where H is the Hilbert space associated with the quantum
communication system. In (2), C(∆)

M is obtained by mapping
each classical symbol ai,j ∈ A(∆)

M to the corresponding
quantum state |ψi,j⟩. Specifically, |ψi,j⟩ is obtained by varying
suitable characteristics of an initial state |ψ⟩ by a quantity that
depends on ai,j . Notice that the geometrical structure of A(∆)

M

is completely determined by ∆ and L. This, in general, does
not hold for C(∆)

M , which also depends on the class of employed
quantum states and on the characteristics chosen for encoding
the information. The information conveyed by quantum states
is retrieved by a quantum receiver, which implements a set of
positive operator-valued measures. The goal of the quantum
receiver is to determine the state that was transmitted, thus
determining the associated symbol. However, since quantum
QAM constellations generally do not exhibit GUS, only sub-
optimal receivers can be employed to evaluate the SEP.

B. Preliminaries on Hermite Polynomials

As we will see in Sec. III, Hermite polynomials play an
important role in the characterization of PAGSs. Here we
report some known results on Hermite polynomials that will
be used in the following.

For x ∈ C, the single-variable Hermite polynomial of
degree n is

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

For t, x, y ∈ C, |t| < 1, and l ∈ N, the bilinear generating
function for single-variable Hermite polynomials is [30]

G(t, x, y; l) =

∞∑
n=0

tn

n! 2n
Hn+l(x)Hn(y)

=
G(t, x, y; 0)√

(1− t2)l
Hl

(
x− yt√
1− t2

)
(3)

where G(t, x, y; 0) is the Mehler’s kernel formula given by

G(t, x, y; 0) =
e(1−t

2)
−1
[2xyt−(x2+y2)t2]
√
1− t2

.

III. PURE PHOTON-ADDED GAUSSIAN STATES

This section presents pure PAGSs and derives their Fock
representation and inner product.

A. Definition of Pure Photon-Added Gaussian States
Consider a single bosonic mode associated with a Hilbert

space H and satisfying the canonical commutation relation
JA,A†K− = IH. According to Caves’ convention [31], a
Gaussian state |µ, ζ⟩ is defined as

|µ, ζ⟩ = DµSζ |0⟩ (4)

where |0⟩ is the vacuum state. A k-PAGS is obtained by
performing k creation operations on |µ, ζ⟩ as [32], [33]

|ψ(k)(µ, ζ)⟩ = 1

N (k)(µ, ζ)

(
A†)k |µ, ζ⟩ (5)

where N (k)(µ, ζ) is the associated normalization con-
stant (photon-addition produces a non-unitary transformation)
given by

N (k)(µ, ζ) =

√
⟨ζ, µ|Ak(A†)

k|µ, ζ⟩ . (6)

According to Yuen’s convention [34], the Gaussian state |µ, ζ⟩
defined in (4) can equivalently be written as

|µ, ζ⟩ = SζDµλ+µ∗ν |0⟩ (7)

where

λ = cosh(|ζ|) (8a)
ν = eı(θ+π) sinh(|ζ|) (8b)

generate the linear transformation Â = λA + νA†. Such
transformation preserves the canonical commutation relation
JÂ, Â†K− = JA,A†K− = IH. In this paper, we adopt Caves’
convention. Notice that (5) is general and can be used to obtain
any kind of Gaussian state by setting k = 0. For example, by
using k = 0 and ζ = 0, (5) gives a coherent state.

An important property of Gaussian states is given by their
closure under rotational transformations. Indeed, from the
Baker-Campbell-Hausdorff formula [35], a rotated Gaussian
state RϕDµSζ |0⟩ can equivalently be written as

RϕDµSζ |0⟩ = DµeıϕSζeı2ϕ |0⟩ . (9)

Specifically, (9) shows that it is not restrictive to operate with
Gaussian states defined as in (4) since any rotated Gaussian
state can always be written as a Gaussian state by transforming
both displacing and squeezing parameter according to (9).
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⟨ψ(h)(ξ, γ)|ψ(k)(µ, ζ)⟩ = Λ∗(ξ, γ)Λ(µ, ζ)

N (h)(ξ, γ)N (k)(µ, ζ)

√(
2eı(θ+π) tanh(|ζ|)

)k−h
× ∂h

∂ρ(γ, ζ)
h

[
ρ(γ, ζ)kG

(
ρ(γ, ζ), η∗(ξ, γ), η(µ, ζ); k − h

)]
(14)

B. Fock Representation of a Pure PAGS
The Fock representation of pure PAGSs is required for

deriving their inner product, which is crucial to analyze the
SEP of quantum communication systems employing PAGSs.
The Fock representation of a pure PAGS is provided by the
following lemma.

Lemma 1 (Fock representation of a pure PAGS): Consider
a pure PAGS |ψ(k)(µ, ζ)⟩ ∈ H. Its representation in the Fock
space is given by

|ψ(k)(µ, ζ)⟩ = 1

N (k)(µ, ζ)

∞∑
n=0

c(k)n (µ, ζ) |n+ k⟩ (10)

where

c(k)n (µ, ζ) =
Λ(µ, ζ)

n!

√
(n+ k)!

(
eı(θ+π) tanh(|ζ|)

)n
2n

×Hn

(
η(µ, ζ)

)
(11)

with

Λ(µ, ζ) ≜
√

sech(|ζ|)

× exp

{
−1

2

(
|µ|2 + (µ∗)2eı(θ+π) tanh(|ζ|)

)}
(12)

η(µ, ζ) ≜
µ+ µ∗eı(θ+π) tanh(|ζ|)√

2 eı(θ+π) tanh(|ζ|)
. (13)

Proof: See Appendix A.

C. Inner Product of Pure PAGSs
In the following, we derive a closed-form expression for the

inner product of two pure PAGSs.
Theorem 1 (Inner product of two pure PAGSs): Consider two

pure PAGSs |ψ(k)(µ, ζ)⟩ and |ψ(h)(ξ, γ)⟩ ∈ H, with, k, h ∈
N, k ⩾ h without loss of generality, µ, ζ, ξ, γ ∈ C, ζ = |ζ|eıθ,
and γ = |γ|eıφ. The inner product ⟨ψ(h)(ξ, γ)|ψ(k)(µ, ζ)⟩ is
given by (14) at the top of the page, where

ρ(γ, ζ) ≜
√
eı(θ−φ) tanh(|γ|) tanh(|ζ|) . (15)

Proof: See Appendix B.
Notice that (29c) can be used to obtain the normalization

constant N (k)(µ, ζ) in (6) by setting h = k, ξ = µ,
and γ = ζ. Therefore, the quantity ⟨γ, ξ|Ah

(
A†)k|µ, ζ⟩

completely determines ⟨ψ(h)(ξ, γ)|ψ(k)(µ, ζ)⟩. Furthermore,
⟨γ, ξ|Ah

(
A†)k|µ, ζ⟩ also determines the mean number of

photons n̄(k)p (µ, ζ), which is found to be

n̄(k)p (µ, ζ) =

[
N (k+1)(µ, ζ)

N (k)(µ, ζ)

]2

− 1 . (16)

IV. QUANTUM QAM WITH PURE PAGSS

This section develops the quantum QAM technique with
pure PAGSs.1

A QAM constellation with pure PAGSs can be constructed
by exploiting rotational symmetries exhibited by the geometri-
cal structure of the alphabet of symbols A(∆)

M . In the following,
we show how to construct arbitrary M -QAM constellations
of PAGSs from M/4 quaternary PSK sub-constellations.2

The advantage of this method relies on the fact that PSK
constellations exhibit GUS and can be generated by multiple
rotations of a reference state. From (1) and (2), the quantum
constellation of PAGSs for the M -QAM technique is

C(∆,k)
M ≜

{
|ψ(k)(ai,j , ζai,j )⟩ ∈ H, ai,j ∈ A(∆)

M

}
(17)

where ai,j determines both the displacing parameter and the
squeezing parameter of |ψ(k)(ai,j , ζai,j )⟩. Therefore, for a
given k, |ψ(k)(ai,j , ζai,j )⟩ is completely determined by ai,j .
The geometrical interpretation of (17) can be seen in the phase
space, where |ψ(k)(ai,j , ζai,j )⟩ is represented by an ellipse
centered at ai,j , with eccentricity and orientation determined
by ζai,j (see Fig. 1). In particular, the eccentricity depends on
|ζai,j |, while the orientation, i.e., the direction of the semi-
major axis, is given by arg

{
ζai,j

}
/2. We then define

R(∆,k)
M ≜

{
|ψ(k)(ai,j , ζai,j )⟩∈ C(∆,k)

M , arg{ai,j}∈ [0, π/2)
}

(18)

as the set of quantum states of the constellation that are located
in the first quadrant of the phase space. From (18), the quantum
M -QAM constellation can be obtained by considering R(∆,k)

M

as the set of reference states associated with M/4 quaternary
PSK sub-constellations. Notice that the number of reference
states is |R(∆,k)

M | =M/4, and is given by the number of com-
plex symbols ai,j located into the first quadrant of the complex
plane. Therefore, the quaternary PSK sub-constellation gener-
ated by the reference state |ψ(k)(ai,j , ζai,j )⟩ ∈ R(∆,k)

M is

C(∆,k)
PSK

(
|ψ(k)(ai,j , ζai,j )⟩

)
≜

{
R2πm/4|ψ(k)(ai,j , ζai,j )⟩ ,

m = 0, 1, 2, 3
}

(19)

where, from (9), it is

R2πm/4|ψ(k)(ai,j , ζai,j )⟩ = |ψ(k)(ai,je
ımπ/2, ζai,je

ımπ)⟩ .
(20)

1In the remainder of the paper we consider equiprobable symbols, i.e.,
P{a = ai,j} = 1/M .

2Arbitrary M -QAM constellations can be constructed from multiple qua-
ternary PSK constellations.
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pi

qj

π
4

π
6

m = 1

m = 2

m = 3

∆−∆

∆

−∆

Fig. 1: Representation of the quaternary PSK sub-constellation
C(∆,k)
PSK ( |ψ(k)(a2,2, ζa2,2)⟩), where a2,2 = ∆(1 + ı) and

arg
{
ζa2,2

}
= π/3 . The reference state |ψ(k)(a2,2, ζa2,2)⟩ is de-

picted as the ellipse (contour plot of the associated Wigner function)
in the first quadrant and with center determined by the thick blue
vector, which represents the displacement a2,2 in polar coordinates.
The ellipse is tilted of arg

{
ζa2,2

}
/2 = π/6 . The remaining states

are obtained from the anticlockwise rotation of |ψ(k)(a2,2, ζa2,2)⟩
given by (20) with m = 1, 2, 3 .

Notice that in the phase space, the eccentricity of the ellipses
is invariant under rotations. Therefore, states of the same
quaternary PSK sub-constellation differ only in the elliptical
centers and orientations (see Fig. 1). Finally, from (19) and
(20) the M -QAM constellation of PAGSs can be written as

C(∆,k)
M =

⋃
|ψ(k)(ai,j ,ζai,j

)⟩∈R(∆,k)
M

C(∆,k)
PSK

(
|ψ(k)(ai,j , ζai,j )⟩

)
(21)

and it is completely determined by R(∆,k)
M . The effects of

L and ∆ on C(∆,k)
M can be appreciated in the phase space.

Specifically, L determines the number M = L2 of ellipses
(representing quantum states of C(∆,k)

M ), while ∆ impacts
on their position and eccentricity, which depend on ai,j and
ζai,j , respectively. Notice that from the generality of PAGSs
and the method for constructing arbitrary quantum M -QAM
constellations, (21) can also describe constellations of any kind
of pure Gaussian states as a particular case. For example,
for k = 0 (i.e., no photon-additions) and ζ = 0 (i.e., no
squeezing), (21) describes a constellation of coherent states.

V. PERFORMANCE OF QUANTUM QAM
WITH PURE PAGSS

In this section, we evaluate the performance of quantum
QAM communications with pure PAGSs. In particular, we

compare the SEP obtained when employing PAGSs with the
one given by conventional coherent states.

A. Square Root Measurement Receiver

Classical symbols of the alphabet A(∆)
M are encoded into

the corresponding quantum states, elements of the M -QAM
constellation C(∆,k)

M sent through a quantum channel.3 The
SEP is related to the probability of the quantum receiver to
wrongly discriminate the received quantum states. Recall that
quantum QAM constellations generally do not exhibit GUS
except for particular cases (e.g., L = 2). Therefore, evaluating
the SEP requires to employ sub-optimal receivers. In this
paper, we evaluate the SEP by using the sub-optimal SRM
receiver, which is optimal when constellations exhibit GUS
[26]–[28]. For an M -QAM constellation, the SEP Pe obtained
when employing the SRM receiver is [20]

Pe = 1− 1

M

M∑
i=1

[
(G

1
2 )ii

]2
(22)

where (G
1
2 )ij is the element in the i-th row and j-th column

in the square root of the Hermitian M ×M Gram matrix G,
whose elements are the inner products of the quantum states
of the quantum M -QAM constellation.

The PAGSs can be obtained by applying, in this order,
squeezing and photon-addition operations on initial coherent
states generated by a coherent source (e.g., laser). Therefore,
the Pe in (22) can be evaluated for different values of the
mean number of signal photons n̄s utilized by the coherent
source to generate the initial constellation of coherent states.
In particular, it is

n̄s =
1

M

L∑
i=1

L∑
j=1

n̄(0)p (ai,j , 0) (23)

=
2

3
(M − 1)∆2 (24)

where (24) is obtained by using (16) in (23).

B. Performance Evaluation

Fig. 2 shows the Pe as a function of n̄s for 4-QAM (L =
2) constellations employing coherent states and PAGSs. The
squeezing parameter of the reference PAGS is set to ζa2,2 =
−0.5ı. It can be noticed that when employing PAGSs, the
Pe decreases with k. This can be attributed to the photon-
addition operations that increase the mean number of photons
of the initial Gaussian states, thus resulting in a more spaced
constellations. Fig. 2 also shows, for each k, the values of n̄s
for which PAGSs perform better than coherent states.

A similar behavior can be observed from Fig. 3, which
depicts the Pe as a function of n̄s for 16-QAM (L = 4)
constellations employing coherent states and PAGSs. In this
case, the squeezing parameter of the reference PAGSs is given
by the associated symbol ai,j . Note that in this scenario, the
beneficial effects of the photon-addition operation are more

3In the following, an ideal quantum channel is considered.
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Fig. 2: Pe for 4-QAM constellations of (a) coherent states (black
dotted line); and (b) PAGSs with k = 0 (solid blue line), k = 1
(solid red line), k = 2 (solid green line), and k = 3 (solid orange
line). For each k, the squeezing parameter of the reference PAGS
|ψ(k)(ai,j , ζai,j )⟩ ∈ R(∆,k)

4 is set to ζa2,2 = −0.5ı .

0 2 4 6 8 10

0

−1

−2

−3

−4

n̄s

lo
g
1
0
(P

e
)

Coherent states

PAGSs k = 0

PAGSs k = 1

PAGSs k = 2

PAGSs k = 3

Fig. 3: Pe for 16-QAM constellations of (a) coherent states (black
dotted line); and (b) PAGSs with k = 0 (solid blue line), k = 1
(solid red line), k = 2 (solid green line), and k = 3 (solid orange
line). For each k, the squeezing parameter of the reference PAGSs
|ψ(k)(ai,j , ζai,j )⟩ ∈ R(∆,k)

16 is set to ζai,j = ai,j .

relevant compared to the ones shown in Fig. 2. Indeed, except
for high values of n̄s with k = 0, PAGSs always provide a
performance gain with respect to coherent states.

Further important considerations can be made for Fig. 2 and
Fig. 3. In particular, notice that for the same n̄s, as for classical
systems, the Pe increases with M . This can be attributed to
the fact that when the same amount of energy is employed to
produce higher dimensional constellations, the scale factor ∆
(i.e., the distance between the states of the constellation) is
reduced. Fig. 2 and Fig. 3 also show the operating regimes in
which PAGSs perform better than coherent states, thus opening
the possibility of engineering and optimizing the quantum
constellations. Finally, notice that the 4-QAM discussed in
Fig. 2 is equivalent to a quaternary PSK, thus exhibiting GUS.
Therefore, the Pe shown in Fig. 2 is the minimum SEP.

VI. CONCLUSION

This paper explored the use of pure non-Gaussian PAGSs
for quantum QAM communications. In particular, after char-
acterizing pure PAGSs in the Fock space and providing a
closed-form expression of their inner product, it is shown
how to construct arbitrary QAM constellations of PAGSs from
multiple PSK sub-constellations. Finally, the performance of
QAM with PAGSs is evaluated and compared with the one
provided by conventional coherent states. The mathematical
description of QAM constellations of PAGSs is general and
can also be used to describe QAM constellations of pure
Gaussian states as a particular case. Performance evaluation
shows that PAGSs can offer a performance gain with respect
to conventional coherent states. The findings of this paper pro-
vide useful insights for developing quantum communication
systems with non-Gaussian states and multilevel modulations.

APPENDIX A
PROOF OF LEMMA 1

We recall the well-known relation for A†

(A†)k |n⟩ =
√

(n+ k)!

n!
|n+ k⟩ . (25)

Consider a pure PAGS |ψ(k)(µ, ζ)⟩ ∈ H obtained from the
Gaussian state |µ, ζ⟩ defined as in (4). By expanding |µ, ζ⟩ in
the Fock basis and by using (25), (5) can be written as

|ψ(k)(µ, ζ)⟩ = 1

N (k)(µ, ζ)

∞∑
n=0

⟨n|ζ, µ⟩
√

(n+ k)!

n!
|n+ k⟩

(26)

=
1

N (k)(µ, ζ)

∞∑
n=0

⟨n|SζDµλ+µ∗ν |0⟩

×
√

(n+ k)!

n!
|n+ k⟩ (27)

where (27) is obtained by using (7) in (26). Finally, (11)
follows after using [34, Eq. (3.23)] together with (8), (12),
and (13) in (27).

APPENDIX B
PROOF OF THEOREM 1

Consider two pure PAGSs |ψ(k)(µ, ζ)⟩ , |ψ(h)(ξ, γ)⟩ ∈ H,
where, without loss of generality, k ⩾ h. By using (5), the
inner product of the two PAGSs can be written as

⟨ψ(h)(ξ, γ)|ψ(k)(µ, ζ)⟩ = ⟨γ, ξ|Ah
(
A†)k|µ, ζ⟩

N (h)(ξ, γ)N (k)(µ, ζ)
. (28)

From (10) and (11), ⟨γ, ξ|Ah
(
A†)k|µ, ζ⟩ can be written as in

(29a) at the top of the next page. By denoting j = k− h ⩾ 0
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⟨γ, ξ|Ah
(
A†)k|µ, ζ⟩ = ∞∑

m=0

∞∑
n=0

Λ∗(ξ, γ)Λ(µ, ζ)

m!n!

√
(m+ h)!

(
e−ı(φ+π) tanh(|γ|)

)m
2m

√
(n+ k)!

(
eı(θ+π) tanh(|ζ|)

)n
2n

×Hm

(
η∗(ξ, γ)

)
Hn

(
η(µ, ζ)

)
⟨m+ h|n+ k⟩ (29a)

=
Λ∗(ξ, γ)Λ(µ, ζ)√(

2eı(θ+π) tanh(|ζ|)
)k−h

∞∑
n=0

(n+ k)!

(n+ k − h)!n!

ρ(γ, ζ)
n+k−h

2n
Hn+k−h

(
η∗(ξ, γ)

)
Hn

(
η(µ, ζ)

)
(29b)

=
Λ∗(ξ, γ)Λ(µ, ζ)√(

2eı(θ+π) tanh(|ζ|)
)k−h ∂h

∂ρ(γ, ζ)
h

[
ρ(γ, ζ)

k
∞∑
n=0

ρ(γ, ζ)
n

n! 2n
Hn+k−h

(
η∗(ξ, γ)

)
Hn

(
η(µ, ζ)

)]
(29c)

and p = m− j in (29a), and exploiting (15) together with the
orthonormality of the Fock basis, we obtain (29b). Now, by
noticing that (∂/∂x)

p
xm = (m!/(m − p)!)xm−p, (29b) can

be written as (29c). Finally, by using (29c) and (3) in (28),
and noticing that |ρ(γ, ζ)| < 1, ∀ γ, ζ ∈ C, we obtain (14).
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