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Abstract—Quantum key distribution (QKD) is a key enabler
toward unconditionally secure communications. The imperfec-
tions exhibited by non-ideal sources degrade the QKD perfor-
mance. This raises the problem of engineering the employed
quantum states to mitigate the impairments caused by such
imperfections. This paper proposes to employ noisy photon-
added squeezed states (PASSs) as QKD sources for the decoy-
state protocol. First, noisy PASSs are characterized in the Fock
space. Then, noisy PASSs are engineered for the decoy-state
protocol. Finally, the performance of the decoy-state protocol with
engineered noisy PASSs are quantified in a variety of settings.

Index Terms—Quantum key distribution, quantum state engi-
neering, photon-added squeezed state, quantum noise.

I. INTRODUCTION

Quantum key distribution (QKD) [1] allows two entities,
namely Alice and Bob, to generate and exchange secure
keys for establishing unconditionally secure communications
even in the presence of an eavesdropper, namely Eve [2]–[4].
The unconditional security relies on the exploitation of the
peculiar properties of quantum mechanics [5]–[8]. While the
original Bennett-Brassard 1984 (BB84) protocol considers an
ideal single-photon source (SPS), applications with non-ideal
sources have been developed with satisfactory performance
[9]–[18]. The metrics typically used for assessing the per-
formance of the BB84 protocol are the secure transmission
distance and the secure key generation rate. However, in
some practical scenarios, imperfections exhibited by quantum
systems can be exploited by Eve to gain information about
the key, thus compromising the communication security. In
particular, when Alice employs a non-ideal source (i.e., not
behaving as an ideal SPS), the BB84 is susceptible to a
photon-number-splitting (PNS) attack [19]–[21]. Therefore,
characterizing the BB84 protocol performance is difficult when
accounting for both the employed QKD sources and the
imperfections of the communication systems.

In the literature, the BB84 protocol has been investigated
and its unconditional security has been proven [5]–[8]. To
overcome the security challenges caused by the use of a
non-ideal SPS, the decoy-state protocol was proposed [22]–
[25], and characterized for several noiseless sources, namely
coherent and weak coherent states [22]–[27], modified coher-
ent states [28], heralded single-photon states [29]–[31], and
single photon-added coherent states [32]. However, a general

approach to engineer a variety of QKD sources for the decoy-
state protocol is still missing.

This paper proposes the use of noisy photon-added squeezed
states (PASSs) as QKD sources for the decoy-state protocol.1

The fundamental questions related to the use of noisy PASSs
for QKD are: how does the noise in state preparation affect
QKD performance; and how to engineer noisy PASSs for
QKD? The answers to these questions provide insights to engi-
neer non-ideal sources for mitigating impairments that degrade
QKD performance. The goal of this paper is to improve the
performance of the decoy-state protocol by engineering noisy
PASSs used as QKD sources. The key contributions can be
summarized as follows: (i) characterize noisy PASSs in the
Fock space; (ii) describe the decoy-state protocol with noisy
PASSs; and (iii) quantify the performance of the decoy-state
protocol employing engineered noisy PASSs.

The remaining sections are organized as follows: Section II
describes the decoy-state protocol and defines noisy PASSs.
Section III characterizes noisy PASSs in the Fock space.
Section IV describes the decoy-state protocol with engineered
noisy PASSs. Section V presents the case studies. Finally,
Section VI gives our conclusions.

Notations: Operators are denoted by uppercase letters. For
example, an operator is denoted by X . The sets of complex
numbers and of positive integer numbers are denoted by C
and N, respectively. For z ∈ C: |z| denotes the absolute
value; z∗ denotes the complex conjugate; and ı =

√
−1. The

trace and the adjoint of an operator are denoted by tr{·} and
(·)†, respectively. The annihilation and the creation operators
are denoted by A and A†, respectively. The displacement
operator with parameter µ ∈ C is Dµ = exp

{
µA† − µ∗A

}
.

The squeezing operator with parameter ζ ∈ C is Sζ =
exp

{
1
2ζ(A

†)2 − 1
2ζ

∗A2
}

. The squeezing parameter ζ ∈ C
can equivalently be written as ζ = reıφ, with r ⩾ 0 and
−π < φ ⩽ π. For z, z0 ∈ C, z −→ z0 denotes the limit as z
approaches z0. The hyperbolic sine and the hyperbolic cosine
are denoted by sinh(x) and cosh(x), respectively. The Hermite
polynomial of degree n is denoted by Hn(x). The adjugate of
a matrix is denoted by adj(·).

1PASSs affected by thermal noise during state preparation are referred to
as noisy PASSs.
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II. PRELIMINARIES

This section provides some preliminaries used in the re-
mainder of the paper.

A. Decoy-State Protocol

In practical BB84 implementations, Alice’s non-ideal source
exhibits a non-zero probability of emitting multi-photon states.
In such condition, Eve can retain extra photons by per-
forming a PNS attack, without changing the physical char-
acteristics of the states, thus gathering information about
the key. Unfortunately, the PNS technique compromises the
BB84 unconditional security when the quantum channel does
not exhibit sufficiently small losses [8], [19]–[21]. To cope
with this security challenge, the decoy-state protocol was
proposed [22]–[25]. The idea of the decoy-state protocol is
that Alice employs additional states, namely decoy states, with
different intensities (i.e., mean numbers of photons). Such
decoy states are randomly interleaved with the signal states
used for encoding information in the original BB84 protocol.
Signal and decoy states are indistinguishable as they differ
only in their intensity. Therefore, when performing a PNS
attack, Eve introduces a deviation from the expected statistical
characteristics of both signal and decoy states. Consequently,
when Alice communicates to Bob in which positions she sent
the decoy states, they can compare the expected statistical
characteristics of the decoy states with the measured ones and
detect Eve. Achieving adequate performance of the decoy-
state protocol requires to properly choose both signal and
decoy states. In particular, it is desirable to employ signal
states with sub-Poissonian photon number statistics to reduce
both vacuum and multi-photon emission probabilities while
increasing the single-photon probability.2

B. Noisy Photon-Added Squeezed States

Given a quantum state Ξ, the associated photon-added state
is obtained by performing k ∈ N times the photon-addition
operation on Ξ, and it is defined as

Ξ(k) =
(A†)kΞAk

Nk
(1)

where Nk = tr{(A†)kΞAk} is the associated normalization
constant. A noisy PASS is obtained from (1) by using Ξ =
DµSζΞthS

†
ζD

†
µ , which is the squeezed-displaced thermal

state [33], [34], and Ξth is the thermal state whose Fock
representation is given by

Ξth =

∞∑
n=0

n̄n

(n̄+ 1)n+1
|n⟩⟨n| . (2)

In (2), n̄ = (exp{ℏω/(kBT )} − 1)−1 is the mean number
of thermal photons determined by the Planck’s law once
the angular frequency ω of the electromagnetic field and
the absolute temperature T are given, while ℏ and kB are

2Multi-photon states can be exploited by Eve to perform a PNS attack,
while vacuum states reduce the secure key generation rate.

the reduced Planck constant and the Boltzmann constant,
respectively. Therefore, a noisy PASS is defined as

Ξ(k, µ, ζ, n̄) =
(A†)kDµSζΞthS

†
ζD

†
µA

k

Nk(µ, ζ, n̄)
(3)

where Nk(µ, ζ, n̄) = tr{(A†)kDµSζΞthS
†
ζD

†
µA

k} is the
associated normalization constant. The influence of the noise
in state preparation depends on the intensity n̄ of the thermal
state. Notice that (3) generalizes multiple sub-classes of quan-
tum states, which can be obtained for specific values of k, µ,
ζ, and n̄. Specifically, a noisy PASS turns into a: (i) noisy
photon-added coherent state [35], when ζ −→ 0; (ii) photon-
added squeezed thermal state, when µ = 0; (iii) noisy coherent
state, when ζ −→ 0 and k = 0; (iv) coherent state, when
k = 0, ζ −→ 0, and n̄ = 0; and (v) photon-added displaced
squeezed vacuum state, when n̄ = 0. Therefore, noisy PASSs
can be engineered by tuning k, µ, and ζ.

III. CHARACTERIZATION OF NOISY PASSS

Engineering noisy PASSs requires to characterize them in
the Fock space. This section provides the Fock representation,
photon number distribution, and mean number of photons
of a noisy PASS. The following lemma provides the Fock
representation of a noisy PASS.

Lemma 1 (Fock representation of a noisy PASS): The Fock
representation of a noisy PASS is found to be as in (4) shown
at the top of the next page, where

A = 1 + n̄+ (2n̄+ 1) sinh(r)2 (5a)
B = (2n̄+ 1)eıφ sinh(r) cosh(r) (5b)

C =
n̄(n̄+ 1)

n̄2 + (n̄+ 1
2 )(1 + cosh(2r))

(5c)

D = −
eıφ(n̄+ 1

2 ) sinh(2r)

n̄2 + (n̄+ 1
2 )(1 + cosh(2r))

(5d)

E =
µ
2 + (n̄+ 1

2 )(µ cosh(2r)− µ∗eıφ sinh(2r))

n̄2 + (n̄+ 1
2 )(1 + cosh(2r))

(5e)

p = min{n,m} − k ⩾ 0 . (5f)

Proof: Given a Fock state |n⟩, n ∈ N, from the definition
of A and A†, we have

Ak|n⟩ =

√
n!

(n− k)!
|n− k⟩, for k ⩽ n (6a)

(A†)k|n⟩ =
√

(n+ k)!

n!
|n+ k⟩ . (6b)

Therefore, by using (6) in (3), we obtain

⟨n|Ξ(k, µ, ζ, n̄)|m⟩ =
√
n!m!

Nk(µ, ζ, n̄)
√
(n− k)! (m− k)!

×⟨n− k|DµSζΞthS
†
ζD

†
µ |m− k⟩.

(7)

By using [33, eqs. (4.4), (4,23), and (5.2)] together with (5)
in (7), we obtain (4).
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⟨n|Ξ(k, µ, ζ, n̄)|m⟩ =
√
(n!m!)

Nk(µ, ζ, n̄) (n− k)! (m− k)!

√(
A2 − |B|2

) exp

(
−
A |µ|2 − 1

2

[
B(µ∗)2 +B∗µ2

]
A2 − |B|2

)

×
p∑

i=0

(
n− k

i

)(
m− k

i

)
i!Ci Hn−k−i

(
E√
2D

)
Hm−k−i

(
E∗

√
2D∗

)(
D

2

)n−k−i
2

(
D∗

2

)m−k−i
2

(4)

The normalization constant in (3) is found to be

Nk(µ, ζ, n̄) = (−1)k exp

(
1

2
xTMx

)
× ∂2k

∂xk
1 ∂x

k
2

exp

(
−1

2
xTMx

)
where x = (det{C})−1(adj(ZCZ))TZµ and M =
XZCZ, with

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
µ =

[
µ µ∗]T

C =

(
n̄+

1

2

)[
cosh(2r) sinh(2r)e−ıφ

sinh(2r)eıφ cosh(2r)

]
+

1

2
I .

From (4), the photon number distribution of a noisy PASS is
defined as Pn(k, µ, ζ, n̄) ≜ ⟨n|Ξ(k, µ, ζ, n̄)|n⟩.

Fig. 1 shows the photon number distribution of a noiseless
(n̄ = 0) and noisy (n̄ = 0.1) PASS for different values of k, µ,
and ζ.3 It can be first noticed that for k = 1, both noiseless and
noisy PASSs (Fig. 1c and Fig. 1d, respectively) exhibit prob-
ability zero of vacuum (n = 0) emission due to the photon-
addition operation. Furthermore, it can be observed that for
both k = 0 and k = 1, the photon number distribution of a
noisy PASS (Fig. 1b and Fig. 1d, respectively) deviates from
that one of a noiseless PASS (Fig. 1a and Fig. 1c, respectively).
This is caused by non-vacuum components of the thermal
state that increase multi-photon probabilities. In particular, two
situations can be distinguished. In the first one, when k = 0,
the noisy PASS (Fig. 1b) benefits from the thermal noise and
exhibits a higher single-photon probability and a lower vacuum
emission probability compared to a noiseless PASS (Fig. 1a).
In the second situation, when k = 1, a noisy PASS (Fig. 1d)
exhibits a lower single-photon probability and higher multi-
photon probabilities compared to a noiseless PASS (Fig. 1c).
Therefore, engineering noisy PASSs for QKD applications
requires to properly tune k, µ, and ζ to shape the photon
number distribution of both signal and decoy states.

The following lemma provides the mean number of photons
of a noisy PASS.

Lemma 2 (Mean number of photons of a noisy PASS): The
mean number of photons of a noisy PASS is found to be

n̄p(k, µ, ζ, n̄) ≜ ⟨A†A⟩ = Nk+1(µ, ζ, n̄)

Nk(µ, ζ, n̄)
− 1 . (8)

3Although µ and ζ are complex values, they are plotted for some real
values.

Proof: From the Cahill-Glauber anti-normal ordering
expansion [36, eq. (5.12)] with s = 1, t = −1, and m = n,
we have

(A†)nAn =

n∑
j=0

(−1)j j!

(
n

j

)2

An−j(A†)n−j . (9)

Consider a noisy PASS Ξ(k, µ, ζ, n̄), by using (9) together
with the cyclical property of the trace operator, we have

⟨(A†)nAn⟩ ≜ tr{Ξ(k, µ, ζ, n̄)(A†)nAn}

=

n∑
j=0

(−1)
j
j!

(
n

j

)2

×tr

{
(A†)n+k−jDµSζΞthS

†
ζD

†
µA

n+k−j

Nk(µ, ζ, n̄)

}

=
1

Nk(µ, ζ, n̄)

n∑
j=0

(−1)
j
j!

(
n

j

)2
Nn+k−j(µ, ζ, n̄) .

(10)

In accordance with the definition of mean number of photons,
(8) is obtained by using (10) with n = 1.

IV. DECOY-STATE PROTOCOL WITH NOISY PASSS

This section describes the communication system and the
decoy-state protocol with noisy PASSs, and provides the lower
bound for the secure key generation rate.

A. Communication System
The adopted communication system is in accordance with

[20] and briefly described in the following.
Source: Alice’s source emits noisy PASSs that can be

engineered by tuning k, µ, and ζ. Signal and decoy states
are characterized by a mean number of photons n̄p(k, µ, ζ, n̄)
and n̄p(k, µ

′, ζ ′, n̄), respectively, with n̄p(k, µ, ζ, n̄) >
n̄p(k, µ

′, ζ ′, n̄). The associated photon number distributions
are denoted by Pn(k, µ, ζ, n̄) and Pn(k, µ

′, ζ ′, n̄), respectively.
Quantum channel: the quantum channel is an optical fiber

characterized by its transmittance ηc = 10−αL/10, where α is
the loss coefficient, and L is the length of the optical fiber.

Detection system: Bob’s detection system consists of thresh-
old detectors that discriminate between vacuum and n-photon
states, n ⩾ 1, and it is characterized by its transmittance
ηB = ηd εd, where ηd and εd are the internal transmittance
and the efficiency of the optical detectors, respectively.

For a n-photon state, n ⩾ 1, assuming independence in the
behavior of the photons, the associated overall transmittance
is ηn = 1− (1− η)n, where η = ηc ηB.
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Fig. 1: Photon number distribution for different values of k, µ, and r: (a) noiseless PASS with k = 0, (b) noisy PASS with k = 0, (c)
noiseless PASS with k = 1, and (d) noisy PASS with k = 1 .

B. Noisy PASSs Engineering for the Decoy-State Protocol

Since only a few decoy states are sufficient for practical
implementations [24], [25], the characterization of the decoy-
state protocol is provided for a single decoy state.

The overall gains for signal and decoy noisy PASSs are
respectively defined as

Q ≜
∞∑

n=0

YnPn(k, µ, ζ, n̄) (11)

Q′ ≜
∞∑

n=0

YnPn(k, µ
′, ζ ′, n̄) (12)

where Yn = Y0 + ηn − Y0 ηn is the conditional probability of
Bob’s detection given that Alice sent a n-photon state, and Y0

is the background rate. The overall quantum bit error rates for
signal and decoy noisy PASSs are respectively defined as

Qb = Re Q ≜
∞∑

n=0

enYnPn(k, µ, ζ, n̄) (13)

Q′
b = R′

e Q
′ ≜

∞∑
n=0

enYnPn(k, µ
′, ζ ′, n̄) (14)

where Re and R′
e are the associated total error rates, en =

(Y0/2 + edet ηn)/Yn is the error rate associated with a n-

photon state, and edet is a parameter related to the stability
of the detection system. As mentioned above, both signal and
decoy states are engineered by tuning k, µ, and ζ. Therefore,
it is necessary to establish the state engineering domain, i.e.,
the set in which k, µ, and ζ can be chosen for engineering the
noisy PASSs. To this aim, we define

D(k)
p ≜

{
(µ, ζ, µ′, ζ ′) ∈ C4 : n̄p(k, µ, ζ, n̄) > n̄p(k, µ

′, ζ ′, n̄)
}

D(k)
g ≜

{
(µ, ζ, µ′, ζ ′) ∈ C4 : g(k, µ, ζ, µ′, ζ ′, n̄) ⩾ 0

}
where

g(k, µ, ζ, µ′, ζ ′, n̄) =
Pn(k, µ, ζ, n̄)

Pn(k, µ′, ζ ′, n̄)
− Pn−1(k, µ, ζ, n̄)

Pn−1(k, µ′, ζ ′, n̄)
(15)

for n ⩾ k+1. In particular, D(k)
p is the domain in which signal

noisy PASSs exhibit higher intensities than decoy ones, while
D(k)
g is the domain in which (15) is positive. From (4), it can be

noticed that only k = 0 and k = 1 are admissible. Therefore,
by considering both signal and decoy states obtained by
performing the same number of photon-addition operations k,
the state engineering domain is defined as

D(k)
eng ≜ D(k)

p ∩ D(k)
g , for k ∈ {0, 1} .
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Fig. 2: Secure key generation rate for different values of k, n̄, and q: (a) µ = 0.15, r = 0.1, µ′ = 0.05, r′ = 0.05, and (b) µ = 0.45,
r = 0.2, µ′ = 0.35, and r′ = 0.1. For a fair comparison, the considered state engineering domain is D(0)

eng ∩ D(1)
eng.

It is worth remarking that in D(k)
eng noisy PASSs can be

specialized for engineering multiple classes of QKD sources,
including some already characterized in the literature as spe-
cial cases. This makes noisy PASSs suitable to engineer QKD
sources for various applications in different scenarios. More-
over, such state engineering approach can be easily extended
to an arbitrary number of decoy states.

C. Secure Key Generation Rate
The secure key generation rate is lower bounded by [24]

R ⩾ q {−Qfe H2(Re) + P1(k, µ, ζ, n̄)Y1[1−H2(e1)]} (16)

where q is the sifting efficiency of the protocol (q = 1/2 for
the standard BB84, and q ≃ 1 for the efficient BB84), fe is
the bidirectional error correction efficiency, and H2(·) is the
binary Shannon entropy function. For quantum states in D(k)

eng,
from (15) we obtain

Pn(k, µ, ζ, n̄) ⩾
P2(k, µ, ζ, n̄)

P2(k, µ′, ζ ′, n̄)
Pn(k, µ

′, ζ ′, n̄) . (17)

By using (17) in (11), the following inequality holds

Q ⩾ Y0P0(k, µ, ζ, n̄) + Y1P1(k, µ, ζ, n̄)

+
P2(k, µ, ζ, n̄)

P2(k, µ′, ζ ′, n̄)

∞∑
n=2

YnPn(k, µ
′, ζ ′, n̄) . (18)

Therefore, by using (12) in (18), Y1 is lower bounded by (19)
shown at the top of the next page. Analogously, from (14), e1
is upper bounded by

e1 ⩽
R′

e Q
′ − 1

2Y0P0(k, µ
′, ζ ′, n̄)

Y1P1(k, µ′, ζ ′, n̄)
. (20)

The lower bound for the secure key generation rate, on the
engineering domain, is obtained by using (13), (19), and (20)
in (16).

V. CASE STUDY

This section presents a case study to quantify the secure
key generation rate of the decoy-state protocol employing
engineered noisy PASSs in an optical fiber-based quantum
communication system.

In accordance with the communication system described
in Sec. IV, we consider an optical fiber operating at λ =
1550 nm, with loss coefficient α = 0.2 dB/km. The numerical
results are obtained by setting T = 4K, ηB = 0.145,
Y0 = 3 × 10−6, edet = 1.5 × 10−3, and fe = 1.1. The
secure key generation rate R is evaluated for two different
scenarios: (i) µ = 0.15, r = 0.1, µ′ = 0.05, and r′ = 0.05;
and (ii) µ = 0.45, r = 0.2, µ′ = 0.35, and r′ = 0.1. In both
scenarios, R is computed for k = 0, 1, n̄ = 0, 0.1, q = 1/2,
for the standard BB84, and q = 1 (for simplicity) for the
efficient BB84.

Fig. 2a shows the secure key rate R, for scenario (i), as a
function of the transmission distance d. It can be noticed that
for the same k and n̄, efficient BB84 (q = 1) performs better
than standard BB84 (q = 1/2). Furthermore, when k = 1, both
protocols employing noiseless (solid line) and noisy (dotted
line) PASSs, provide better performance compared to the case
with k = 0. A similar behavior can be observed in Fig. 2b,
which shows the secure key rate for scenario (ii). In this latter
operating regime, the key rates for k = 0 and k = 1 are
respectively higher and lower compared to the ones in Fig. 2a.

Fig. 2a and Fig. 2b also show that for k = 1, QKD performs
better with noiseless PASSs. Surprisingly, for k = 0, QKD
performs better with noisy PASSs. This can be attributed to
the thermal noise respectively increasing and reducing the
probability of emitting a single-photon and a vacuum state.
Therefore, for k = 0, noisy PASSs can be engineered to exploit
the thermal noise for improving the QKD performance.
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Y1 ⩾
Y0[P2(k, µ

′, ζ ′, n̄)P0(k, µ, ζ, n̄)− P2(k, µ, ζ, n̄)P0(k, µ
′, ζ ′, n̄)] + P2(k, µ, ζ, n̄)Q

′ − P2(k, µ
′, ζ ′, n̄)Q

P2(k, µ, ζ, n̄)P1(k, µ′, ζ ′, n̄)− P2(k, µ′, ζ ′, n̄)P1(k, µ, ζ, n̄)
(19)

VI. CONCLUSION

This paper proposed to employ noisy PASSs as QKD
sources for the decoy-state protocol. In particular, after char-
acterizing PASSs accounting for noise in state preparation, it
is shown how such states can be engineered to improve the
performance of the decoy-state protocol. Noisy PASSs can be
engineered by tuning k, µ, and ζ, which are the number of
photon-addition operations, displacing parameter, and squeez-
ing parameter, respectively. Specifically, noisy PASSs can be
engineered only for k = 0 and k = 1. Numerical results show
that, for k = 1, the thermal noise in state preparation degrades
the QKD performance compared to the case with ideal state
preparation. Surprisingly, for k = 0, QKD performs better
in the presence of noisy state preparation due to the thermal
noise increasing the single-photon probability and reducing
the vacuum one. Therefore, for k = 0, noisy PASSs can
be engineered to exploit the noise in state preparation. The
findings of this paper provide insights in the engineering of
non-ideal sources for improving the performance of the decoy-
state protocol.
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