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Abstract— We introduce the spanning tree matching (STM)
decoder for surface codes, which guarantees the error correction
capability up to the code’s designed distance by first employing
an instance of the minimum spanning tree on a subset of ancilla
qubits within the lattice. Then, a perfect matching graph is
simply obtained, by selecting the edges more likely to be faulty.
A comparative analysis reveals that the STM decoder, at the
cost of a slight performance degradation, provides a substantial
advantage in decoding time compared to the minimum weight
perfect matching (MWPM) decoder. Finally, we propose an even
more simplified and faster algorithm, the Rapid-Fire (RFire)
decoder, designed for scenarios where decoding speed is a critical
requirement.

Index Terms— Quantum error correcting codes, quantum com-
munications, quantum computing, surface codes.

I. INTRODUCTION

LEVERAGING the unique characteristics of quantum
mechanics has considerably expanded the possibilities

within the realm of information management, encompassing
various domains such as sensing, processing, and communi-
cation [1], [2], [3]. The key hurdle in constructing a quantum
computer is the inevitable presence of errors that, if not
addressed, rapidly degrade quantum information. Therefore,
error correction is crucial for meaningful quantum compu-
tation [4], [5], [6], [7], [8]. Surface codes are considered
central to the architecture for the first generation of quan-
tum computers, thanks to their high error thresholds, planar
structure, and locality [9], [10]. The minimum weight perfect
matching (MWPM) decoder is presently the most widely used
decoder for surface codes [11], [12], [13]. This decoder results
in large threshold error rates, but in practice, its polynomial
time complexity introduces a latency that can be a bottleneck
for fault-tolerant quantum computing architectures [5], [14],
[15]. Considerable efforts have been invested in optimizing the
performance of this decoder [16], [17]. Sub-optimal algorithms
based on the union-find (UF) decoder have also been proposed,
achieving almost linear time in code length [18], [19]. Addi-
tionally, there is ongoing research into neural network-based
solutions [20].
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In this letter, we present a fast decoding technique tai-
lored for surface codes, called the spanning tree matching
(STM) decoder. The STM algorithm involves implementing
an instance of the minimum spanning tree (MST) on a subset
of the ancilla qubits within the lattice. This is followed by
a simple and fast construction of a perfect matching graph,
resulting in the estimated error pattern. Finally, we propose an
even more simplified and faster algorithm, the RFire decoder,
tailored for situations where decoding speed is of paramount
importance. We conduct a comparative analysis of the per-
formance, considering logical error rates and execution times,
between the STM, RFire, and MWPM decoders. We show that,
at the price of some performance degradation, the proposed
algorithms offer significant advantages in terms of decoding
time.

II. PRELIMINARIES AND BACKGROUND

A. Quantum Stabilizer Error-Correcting Codes

The Pauli operators are denoted as X,Y , and Z. We indi-
cate with [[n, k, d]] a quantum error correcting code (QECC)
encoding k logical qubits |φ⟩ into a codeword of n data qubits
|ψ⟩, with minimum distance d. The code allows the correction
of all patterns with up to t = ⌊(d− 1)/2⌋ data qubit errors.

Employing the stabilizer formalism, each code is character-
ized by n−k independent and commuting operators Gi ∈ Gn,
termed stabilizer generators or simply generators, with Gn

being the Pauli group on n qubits [5], [6]. The subgroup of
Gn generated by all combinations of the Gi ∈ Gn is called
stabilizer and indicated as S. The code C is the set of quantum
states |ψ⟩ stabilized by S, i.e., satisfying S |ψ⟩ = |ψ⟩ ∀S ∈ S,
or, equivalently, Gi |ψ⟩ = |ψ⟩ , i = 1, 2, . . . , n − k. The
operators that commute with the stabilizer group but are not
part of it are called logical operators. The generators specify
measurements on quantum codewords that do not disturb the
original quantum state. These measurements are carried out
using extra qubits, named ancillas. In fact, assume an error
E ∈ Gn affects a codeword, so that the state becomes E |ψ⟩.
It is possible to extract a binary sequence s (also referred to as
error syndrome) where the i-th entry si is zero if Gi commutes
with E, while si = 1 if Gi anticommutes with it. This enables
the possibility to perform quantum error correction through
error syndrome decoding using as input the binary sequence
s. We will refer to ancillas measuring si = 1 as defects.

Among stabilizer codes we find the surface codes. These
codes arrange qubits on a planar sheet [9], [21], [22], [23]. One
of the advantages of such an arrangement, is that it requires
only nearest-neighbor interactions between qubits. Also, this
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structure enables the possibility to perform a single round of
stabilizer measurements with parallel operations [24]. Logical
operators can be easily identified on the surface codes: ZL

(XL) operator consists of a tensor product of Z’s (X’s)
crossing horizontally (vertically) the lattice [21]. In the case
of a QECC over the depolarizing channel with data qubit error
probability p ≪ 1, we can approximate the logical error rate
as [25]

pL ≈ (1− βt+1)
(

n

t+ 1

)
pt+1 (1)

where βt+1 is the fraction of errors of weight t + 1 that the
decoder is able to correct.

B. Minimum Weight Perfect Matching

A key characteristic of surface codes is the availability of
a minimum weight decoder, known as the MWPM. This syn-
drome decoder constructs a graph in which vertices represent
defects, and edges are assigned weights depending on the
error probability of the qubits separating the pair. For instance,
in case of independent identically distributed (i.i.d.) data qubit
errors, these weights correspond to the number of qubits
between the pair. In general, such a weighting procedure is
performed using the Dijkstra algorithm to connect the defects
on the graph representing the full lattice [11]. By suitably
assigning distances on the lattice, Dijkstra’s algorithm allows
for the consideration of different systems and qubit error
statistics. For surface and rotated surface structures [22], [26],
considering i.i.d. data qubit errors, this step can be greatly
simplified adopting the Manhattan distance between defects.
Then, the MWPM proceeds by matching the graph to estimate
the data qubit errors. A matching of a graph is a set of edges
such that no two edges in the matching share a common
vertex. A perfect matching is a matching that includes all
vertices in the graph [27]. For topological quantum codes
without boundaries (toric codes), we can directly search for
perfect matches using the MWPM algorithm on the resulting
graph [14]. For surface codes, which have boundaries, it is nec-
essary to add ghost defects (also known as ghost ancillas [28])
before applying Dijkstra’s algorithm. This is because errors
occurring along a boundary excite only one ancilla, leading to
an odd number of defects which impedes running the MWPM.
Therefore, for each defect, a corresponding ghost defect is
considered by the decoder. In the final graph, these defects are
also connected between themselves with zero distance in order
to preserve the error correction capability of the code [28].

The decoder based on the MWPM is able to guarantee
the error correction capability t. In addition, it is also able
to correct a significant amount of error patterns of weight
greater than t. As an example, for the [[9, 1, 3]] rotated surface
code over the depolarizing channel, we have β2 = 0.5, i.e.,
the decoder is able to correct 50% of the error patterns of
weight two [26]. As implemented in the library for effi-
cient modeling and optimization in networks (LEMON), the
MWPM algorithm complexity is O(NM logN), where N
and M represent the number of vertices and edges in the
graph, respectively [29]. Specifically, for a toric code we have
N = nd and M =

(
nd
2

)
, while for a surface code N = 2nd

and M =
(
2 nd
2

)
due to ghost ancillas, where nd denotes the

number of defects.
Since planar architectures are favorable from an implemen-

tation point of view, we will focus on surface codes in the
following. The STM decoder for toric codes can be easily
constructed by straightforward variations on the algorithm
described below.

III. SPANNING TREE MATCHING DECODER

In this Section, we introduce the STM decoder for surface
codes. First, from (1) we observe that, for a code with given
n and t, the error correction capability is determined by the
fraction of errors of weight w = t + 1 that the decoder is
able to correct. Since the surface codes belong to the class
of Calderbank, Shor, and Steane (CSS) codes, for the sake of
simplicity we will refer to the lattice where the sites constitute
the X generators. The same reasoning can be applied to the
dual lattice.

The STM decoder consists of three phases: MST evaluation,
tree matching procedure, and error correction.

A. Minimum Spanning Tree Phase

We first construct the complete graph G = (nd,
(
nd
2

)
)

connecting all defects, by using Dijkstra or the Manhattan
distances. Note that, since there are no ghost ancillas at this
stage, this graph has fewer edges and vertices than the one
used by the MWPM.

Then, we execute the MST algorithm on the graph. This
can be achieved with a complexity of O(M logN), where
M =

(
nd
2

)
and N = nd stand for the edges and the vertices

of the graph, respectively [30]. At this stage, we construct
two MSTs starting from the obtained one. If the number of
defects is already even, one of the output trees is the original
one, while the other is derived by introducing a ghost defect
on both the left and right sides. If the number of defects is
odd, an output tree is obtained by adding a ghost defect to
the left, while the alternative output tree is built by adding a
ghost defect to the right. Then, the added ghost defects are
connected to the nearest defect in the lattice. An example of
this phase is reported in Fig. 1(b). In case of multiple defects
with a ghost defect at the same distance, we select the one with
the highest minimum distance to other non-ghost defects.

B. Tree Matching Phase

During this step, we match the trees to obtain the estimated
error patterns. For a tree T let us define as E its perfect
matching graph. We use adj(v,G) to indicate the set of vertices
adjacent to the vertex v in the graph G, and deg(v,G) for the
degree of v in the graph G. B(T ) = {v ∈ T | deg(v, T ) = 1}
is the set of boundary vertices in T .

A simple algorithm for obtaining the perfect matching of
an MST consists of the following steps.

1. For each b ∈ B(T )
Let a = adj(b, T );
If deg(a, T ) = 2: call the edges e1 = (a, b) and e2 =
(a, adj(a, T )\{b}). Add e1 to E , and remove the subgraph
({a, b}, {e1, e2}) from T .
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Fig. 1. Spanning tree matching decoder with a [[85, 1, 7]] surface code. a)
Three Z channel errors occur on the lattice. Exited ancillas are depicted in
red. b) Two alternative MSTs obtained with the nearest ghost ancilla to the
left (above) and to the right (below) boundary, respectively. c) Resulting E
from the tree matching procedure.

2. For each b ∈ B(T )
Let a = adj(b, T );
If deg(a, T ) = 3: call {v1, v2} = adj(a, T ) \ {b}, and
the edges e1 = (a, b), e2 = (a, v1), e3 = (a, v2).
Add the edge e1 to E and remove from T the subgraph
({a, b}, {e1, e2, e3}). Insert the edge e = (v1, v2) with
weight w(e) = w(e2) + w(e3) in T . Return to step 1.

3. For each b ∈ B(T )
Let a = adj(b, T );
If deg(a, T ) = 4: remove from T the edge e = (a, v)
where v is the sole vertex in adj(a, T ) with deg(v, T ) > 1.
Return to step 2.

Note that, considering i.i.d. data qubit errors, a vertex v in
the MST cannot have deg(v, T ) > 4.

The algorithm terminates when the graph T becomes empty,
and gives a set of edges E representing a valid solution to the
error correction problem. This procedure is carried out for both
the MSTs obtained in Section III-A, and the two solutions
are indicated as E1 and E2. Examples of the tree matching
procedure described above are depicted in Fig. 1(c) and in
Fig. 2(c).

C. Error Correction

After the previous phase we have two possible sets of faulty
qubits, E1, E2, with a total number of data qubit errors w1 and
w2, respectively. An instance of STM decoding, involving both
MSTs, is illustrated in Fig. 1. If w1 ≤ t + 1 or w2 ≤ t + 1,
then we have found the correction operator.1

If, instead, both w1 and w2 have weight > t+ 1, a simple
processing considering both E1 and E2 can be applied, which
guarantees the correction if the channel errors has weight ≤ t
(see Section III-D). The basic idea is choosing the solution
with the smallest number of horizontally traversed edges. This
is motivated by the fact that logical operators traverse the
lattice from one side to the other one. Hence, the correction

1Note that, if w1 ⩽ t, the matching of the second tree can be avoided to
save time.

Fig. 2. Spanning tree matching decoder with a [[85, 1, 7]] surface code.
Both matched spanning trees have w > t + 1. Hence, the error correction is
performed according to (2).

with more operators along the horizontal dimension will more
likely cause a logical operator (i.e., an undetected error).

Definition 1: A column is the set of horizontal edges
aligned in the vertical direction of the lattice, as shown in
Fig. 2(a).

In this way, we can enumerate the columns from left to right
ranging from 1 to d. Then, we can define two vectors ci with
entries ci,j , where i = 1, 2 and j = 1, . . . , d, representing the
cardinality of the intersection between Ei and the j-th column.
Since a solution Ei with two edges in the j-th column is
equivalent, by adding a stabilizer, to another solution without
any edge in the j-th column, we also define as ui a vector with
entries ui,j = ci,j mod 2. As a consequence, the function

f(Ei) =
d∑

j=1

ui,j (2)

can be used as a metric to quantify how much correcting Ei

is likely to cause a logical operator. Thus, the final solution
is that minimizing (2). For instance, in Fig. 2(c) there are
three edges in solution E1, with weights w = 1, w = 2, and
w = 5. They consist of one, two, and three horizontal qubits,
respectively. However, the horizontal qubit of the edge with
weight w = 1 belongs to the same column as the edge with
weight w = 5. Hence, f(Ei) = 4.

D. Distance-Preserving Decoding

In this section we show that (2), in the case of a [[n, k, d =
2t+ 1]] surface code, assures the correction of channel errors
with weight w ⩽ t.

Lemma 1: Given a surface code, let us call C an arbitrary
Pauli Z error chain connecting two sites defects v1 and v2.
Then, the intersection of C with any column between v1 and
v2 has cardinality 1 (mod 2). The intersection with any of the
other columns has cardinality 0 (mod 2).

Proof: The minimal-weight chain linking v1 and
v2 clearly satisfies the theorem. Every other chain can be
obtained from this one, through the application of plaquette
generators. Since each plaquette has two edges in the same
column, it does not affect the modulo 2 counting. □
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Lemma 2: Given any error pattern over an [[n, k, d]] surface
code, resulting in an even number of site defects (including
also ghost defects), all possible perfect matchings M have the
same metric f(M).

Proof: We label the horizontal position of the sites in
the lattice, from left to right, as 0, 1, . . . , d+ 1, with 0 for the
left ghost defect and d+1 for the right ghost defect. Vertically
aligned sites share the same label. Let us firstly examine
the case where the lattice has four site defects. Reordering
them we obtain four indexes 0 ≤ j1 ≤ j2 ≤ j3 ≤ j4 ≤
d + 1, representing the site positions. In this setup we can
have three possible perfect matchings Mi, with i = 1, 2, 3.
Considering M1 as the one connecting site 1 with 2, and
site 3 with 4, by application of Lemma 1, we have that
f(M1) = (j2 − j1) + (j4 − j3). It is easy to check that the
other two matchings have the same metric. Finally, we observe
that each perfect matching M in any graph G with an even
number of defects can be obtained by iteratevely removing
two edges and reconnecting them as needed. Hence, the claim
follows since this operation does not affect the metric f(M).

□
Corollary 1: Each perfect matching has the same metric (2)

as the MWPM. It follows that (2) can be interpreted as
the minimum number of traversed columns for all perfect
matchings of the same graph.

We have seen in Section III-A that, starting from a complete
graph G formed by connecting all defects, we obtain two
distinct graphs G1 and G2 by adding ghost ancillas. Due to
the even number of defects in these graphs, we can compute
two perfect matchings, denoted as E1 and E2. It is noteworthy
that applying a logical operator to one matching we get the
other. Consequently, one of the solutions will correct the error
(call it Ec), while the alternative, Ea, will produce a logical
error.

Theorem 1: Let us consider an [[n, k, d]] surface code and
an error pattern of weight w ≤ t. A perfect matching leading
to the correct solution, Ec, has f(Ec) < f(Ea), with Ea being
any perfect matching on the alternative graph.

Proof: The number of columns in the lattice is d. Since
we are considering error patterns with weight w ≤ t, we have
that any perfect matching Ec representing the correct solution,
due to Lemma 2, satisfies f(Ec) ≤ t. Regarding the alternative
solution Ea, we have that f(Ea) = d−f(Ec), since they differ
by a logical operator. This leads to f(Ea) ≥ t + 1 for d odd
and f(Ea) ≥ t+ 2 for d even, proving the statement. □

The previous theorem states that a surface decoder chosing
a matching with the minimum traversed column metric (2)
preserves the error correction capability of the code.

The same theorem applies to rotated surface codes as well,
owing to their similar lattice structure.

IV. RAPID-FIRE DECODER

We show now how to design an even faster decoder that
ensures the correction for all errors with weights w ⩽ t. Due
to Corollary 1, each matching is equivalent to the minimum
one in terms of (2). Hence, it is possible to compute Ei with
i = 1, 2 without evaluating and matching the MST. Firstly,

Fig. 3. Logical error probability vs. physical error probability of the channel.
Rotated [[9, 1, 3]], and standard [[13, 1, 3]], [[41, 1, 5]], and [[85, 1, 7]] surface
codes over depolarizing channel.

we compute the complete graph G on the defects. Then,
we construct two graphs Si by adding to G ghost ancillas on
boundaries with the same strategy described in Sections III-A.
For each Si, we iteratively pair each defect with its closest one
in a greedy fashion, we update the solution Ei, and we remove
both the defects from Si. This process results in two potential
sets of faulty qubits, E1 and E2. Finally, we determine the error
correction operator to adopt, following the procedure outlined
in Section III-C. In this way, we guarantee the correction of
all errors of weight up to w = t by Theorem 1. We call this
the RFire decoder.

V. NUMERICAL RESULTS

In this section we compare the performance of surface and
rotated surface codes using MWPM, STM, and RFire decoding
via Monte Carlo simulations. These decoders are implemented
in C++ and run with an Apple Silicon M2 processor. In the
implementation, we exploit the LEMON C++ library for an
efficient MWPM algorithm [29]. To evaluate the complexity
of the decoders we measure the average execution time of
the processing that starts with the initial complete graph G
(generation of G not included) and ends returning the solution
E . The evaluation, carried out when varying the lattice size and
the number of Z defects, is reported in Table I. As expected,
the computational time saving is remarkable when STM and
RFire are adopted. Furthermore, in Fig. 3, the logical error rate
of some surface codes over a depolarizing channel is depicted.
In particular, the performance gap between MWPM and the
proposed fast decoders widens progressively as the distance
of the code increases. This is due to the fact that, although
the STM and the RFire decoders effectively correct all the
errors with weights up to t, the MWPM decoder corrects
a larger fraction of those with weight t + 1. In terms of
speed, the RFire decoder is the fastest, but it looses in error
correction capability. Note that although we showcased our
decoder using standard surface codes for the sake of clarity,
its performance remains consistent when applied to rotated
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TABLE I
AVERAGE EXECUTION TIMES [µs]

surface types, as illustrated in Fig. 3 for the [[9, 1, 3]] code.
Among the decoders available in the literature, we concentrate
on comparing with the only current fast decoder, which is
the UF [10]. To accomplish this, we utilized the Qsurface
library [10]. Specifically, for the [[85, 1, 7]] surface code and
a physical error rate pZ = 0.03, the UF shows a speedup
by a factor of approximately ×2 with respect to MWPM.
In the same settings, the speedup of RFire and MST decoders
with respect to MWPM is ×3625, and ×164, resulting in the
quickest execution times.

VI. CONCLUSION

We have introduced two fast decoders designed for surface
codes and compared their performance with the widely used
MWPM decoder. While observing a slight reduction in error
correction capability for errors of weight j ⩾ t+1, our findings
highlight a substantial advantage in terms of execution times,
with a speedup of a factor ×10.000, for both the STM and
the RFire decoders.
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[29] B. Dezső, A. Jüttner, and P. Kovács, “LEMON—An open source C++
graph template library,” Electron. Notes Theor. Comput. Sci., vol. 264,
no. 5, pp. 23–45, Jul. 2011.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2022.

Open Access funding provided by ‘Alma Mater Studiorum - Università di Bologna’ within the CRUI CARE Agreement

http://dx.doi.org/10.1109/JSAC.2024.3380088

