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Abstract—Surface codes are versatile quantum error-
correcting codes known for their planar geometry, making them
ideal for practical implementations. While the original proposal
used Pauli X or Pauli Z operators in a square structure, these
codes can be improved by rotating the lattice or incorporating a
mix of generators in the XZZX variant. However, a comprehen-
sive theoretical analysis of the logical error rate for these variants
has been lacking. To address this gap, we present theoretical
formulas based on recent advancements in understanding the
weight distribution of stabilizer codes. For example, over an
asymmetric channel with asymmetry A = 10 and a physical error
rate p → 0, we observe that the logical error rate asymptotically
approaches pL → 10p2 for the rotated [[9, 1, 3]] XZZX code and
pL → 18.3p2 for the [[13, 1, 3]] surface code. Additionally, we
observe a particular behavior regarding rectangular lattices in
the presence of asymmetric channels. Our findings demonstrate
that implementing both rotation and XZZX modifications simul-
taneously can lead to suboptimal performance. Thus, in scenarios
involving a rectangular lattice, it is advisable to avoid using both
modifications simultaneously.

Index Terms—Quantum Computing; Error Correction; Quan-
tum Networks; Quantum Channels; Quantum Information Sci-
ence

I. INTRODUCTION

The Quantum Internet has emerged as a promising paradigm
with the potential to revolutionize various fields, including
computation, secure communication, and enhanced sensing.
For example, it will enable the realization of distributed
quantum computers which could solve complex problems
more efficiently than classical computers. However, quantum
systems are highly susceptible to errors and decoherence,
which pose significant challenges to realizing reliable quantum
computation and quantum networks [1]–[7]. Quantum error-
correcting codes play a crucial role in preserving and pro-
tecting quantum information and are therefore fundamental
in quantum computation, quantum memories, and quantum
communication systems [1], [2], [8]–[13].

Among the different types of quantum error correcting codes
(QECCs), surface codes have gained significant attention, as
they are compatible with 2D architectures, and also require
error syndrome measurements which are inherently among
few close qubits. The original surface codes, which pertain
to the class of stabilizer codes, adopt generators composed of
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three or four Pauli operators, each generator using one Pauli
type only [14], [15]. Variants of the original surface codes
have been proposed. In the so-called “rotated” surface codes,
some qubits are removed, so that the generators have only
two or four Pauli operators, maintaining the same minimum
distance [16]. Another variant consists in allowing to mix Pauli
type operators within each generator, in the so-called XZZX
variant [17].

Implementations of surface codes with minimum distance
three have been reported recently in [18] and [19]. In these
works, 17 physical qubits (9 data qubits and 8 qubits for
syndrome measurements) in a superconducting circuit have
been used to realize a rotated squared surface code, employing
stabilizer generators of type XX, ZZ, XXXX, ZZZZ. The
error correction is performed with a minimum weight perfect
matching (MWPM) algorithm and is repeated to preserve one
logical qubit from decoherence. In [20] a larger surface code
is realized, with superconducting devices used to implement
a 49 physical qubits code (25 data qubits and 24 qubits
for syndrome measurements) with minimum distance five.
This code slightly outperforms the distance three surface
code, demonstrating a possible path toward scalable quantum
error correction. The architecture adopted in [20] is a rotated
squared surface code with XX, ZZ, and XZZX generators.

The theoretical performance of surface codes has been
investigated in the literature mainly in terms of accuracy
threshold over symmetric channels for fault-tolerant quantum
computing [14], [15], [17], [21]. In [22], [23], an analysis
using the MacWilliams identities was proposed to derive the-
oretical bounds for quantum error detection. Recently, a new
methodology has been introduced to analyze the performance
of generic stabilizer codes, starting from the MacWilliams
identities to derive the logical errors weight distribution [24].
The method allows to derive closed-form formulas for the
logical error rate vs. physical error rate, for both the depolar-
izing channel, as well as for asymmetric channels. These are
channels where errors described by Pauli X, Z, and Y operators
may have different occurrence probabilities [25]–[28].

This article aims to provide a theoretical analysis of the
logical error rate for rotated and XZZX quantum surface codes,
which are the most investigated in practical implementations
[18]–[20]. The key contributions of the paper can be summa-
rized as follows:

• we derive the weight enumerator (WE) for the unde-
tectable errors of rotated and/or XZZX surface codes, via
MacWilliams identities;
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• we provide a set of coefficients that can be used to obtain
the logical error probability without implementing the
decoder, for the main surface codes. This feature can be
used at higher level in the protocol stack to aid the design
of Quantum Internet;

• we compare the original surface codes with the rotated
and/or XZZX variants, highlighting the differences and
advantages over the depolarizing channel and over asym-
metric channels;

• we show that the combined use of rotation and XZZX
variants in rectangular lattice leads to a degradation in
performance.

We will focus in particular on the [[9, 1, 3]], the [[25, 1, 5]], and
the [[15, 1, 3/5]] rotated surface codes, with and w/o the XZZX
variant, and compare them with the original [[13, 1, 3]], the
[[41, 1, 5]], and the [[23, 1, 3/5]] surface codes. In this work, we
have included the shortest examples for both symmetric and
asymmetric variants of surface codes. This decision is driven
by the current limitations in quantum computing, which only
supports a restricted number of physical qubits. Nonetheless,
our analytical approach is general and, in principle, can be
applied to derive the logical error rates of arbitrarily large
surface codes.

This paper is organized as follows. Section II introduces
preliminary concepts and models together with some back-
ground material. In Section III we analyze rotated, XZZX,
and rotated XZZX surface codes, obtaining the WE for the
undetectable errors from MacWilliams identities and applying
it to the evaluation of the logical error rate. In Section IV we
provide the error rate comparison and discuss the effect of
rotation on rectangular surface lattices.

II. PRELIMINARIES AND BACKGROUND

A. Quantum Stabilizer Error-Correcting Codes

We indicate with [[n, k, d]] a QECC with minimum distance
d, that encodes k logical qubits |φ⟩ into a codeword of n
data qubits |ψ⟩, allowing the decoder to correct all patterns
up to t = ⌊(d − 1)/2⌋ errors. A complete decoder will
also correct some patterns of more than t errors. The Pauli
operators are indicated as X,Y and Z. Using the stabilizer
formalism, each code is represented by n − k independent
and commuting operators Gi ∈ Gn, called stabilizer gen-
erators (or simply generators), where Gn is the Pauli group
on n qubits [2], [8]. The subgroup of Gn generated by all
combinations of the Gi ∈ Gn is a stabilizer, indicated as S.
The code C is the set of quantum states |ψ⟩ stabilized by
S, i.e., satisfying S |ψ⟩ = |ψ⟩ , ∀S ∈ S, or, equivalently,
Gi |ψ⟩ = |ψ⟩ , i = 1, 2, . . . , n− k. The generators have great
importance in quantum error correction since they describe
which measurements on the quantum codewords do not perturb
the original quantum state. This enables the possibility to
perform quantum error correction exploiting error syndrome
decoding [2]. The logical operators of a stabilizer code are
those that commute with the stabilizer group but are not
contained in it. Hence, these operators map a codeword into a
different one. The knowledge of the logical operators’ structure
permits the evaluation of the channel errors that, together with

the decoding correction, cause a decoding failure. As shown
in [24], the logical error rate thus depends on the stabilizer
logical operators WE and on the employed decoder (e.g., based
on the MWPM algorithm). We remark that the actual logical
error rates attainable by a complete decoder, like the MWPM,
are beyond the conventional bounded distance performance.

B. Theoretical Performance Analysis of Quantum Codes
We analyze codes over quantum channels assuming the

different qubits in the code experience independent and iden-
tically distributed errors, a model which is commonly adopted
to compare quantum error correcting codes [2], [6], [12], [17],
[26], [29]–[31].

Specifically, we assume a quantum channel characterized
by the errors X , Z or Y occurring with probabilities pX, pZ,
and pY, respectively. The probability of a generic error on a
qubit is p = pX + pZ + pY.

Among these quantum channels, two important models are
the depolarizing channel where pX = pZ = pY = p/3, and
the phase-flip channel where p = pZ, pX = pY = 0. We
characterize an asymmetric channel by the asymmetry param-
eter A = 2pZ/(p − pZ). In this way, varying the asymmetry
A we can evaluate the performance of channels having a
prevalent error type (i.e., Z), passing from the depolarizing
channel (A = 1) up to the phase-flip channel (A→ ∞). Error-
correcting codes can also be designed to exhibit asymmetric
behaviors with respect to X , Y and Z Pauli errors [26], [27].
We adopt the notation [[n, k, dX/dZ]] for asymmetric codes
able to correct all patterns up to tX = ⌊(dX − 1)/2⌋ Pauli X
errors and tZ = ⌊(dZ − 1)/2⌋ Pauli Z errors.

To evaluate the performance beyond the nominal error
correction capability of the code, we define fj(i, ℓ) as the
fraction of errors of weight j, with i Pauli Z and ℓ Pauli X
errors, which are not corrected by a given decoder. Hence, the
error probability of a QECC, also indicated as logical error
rate, can be written as [24]

pL =

n∑
j=0

(
n

j

)
(1− p)n−jpj(1− βj) (1)

where

βj = 1− 1

pj

j∑
i=0

(
j

i

)
piZ

j−i∑
ℓ=0

(
j − i

ℓ

)
pℓX p

j−i−ℓ
Y fj(i, ℓ) (2)

is the probability that an error of weight j is correctly decoded.
Note that fj(i, ℓ) depends only on the particular decoder im-
plementation, while βj also depends on the quantum channel
parameters. In the following, we will consider channels with
asymmetry A, so that (2) can be rewritten

βj = βj(A) = 1− 1

(A+ 2)j

j∑
i=0

Ai

j−i∑
ℓ=0

(
j

i

)(
j − i

ℓ

)
fj(i, ℓ) .

(3)

For p ≪ 1 and symmetric codes, the logical error rate is
well-approximated by

pL ≈ (1− βt+1)

(
n

t+ 1

)
pt+1 (4)
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while for asymmetric codes we have

pL ≈ (1− βeg+eZ+1)

(
n

eg + eZ + 1

)
peg+eZ+1

+ (1− βeg+1)

(
n

eg + 1

)
peg+1 (5)

where eg = min {tX, tZ} and eZ = max {0, tZ − eg} for
a [[n, k, dX/dZ]] code [27]. Thus, for a symmetric quantum
error correcting code with t = ⌊(d− 1)/2⌋, once we have the
values of ft+1(i, ℓ), by using (3) we can write the analytical
performance expression (4) which is valid over an asymmetric
channel with arbitrary asymmetry A, including the depolariz-
ing channel (A = 1). Similarly, for asymmetric codes with
correction capability eg and eZ, once we have feg+1(i, ℓ) and
feg+eZ+1(i, ℓ) we can evaluate the performance over arbitrary
asymmetric channels by using (3) and (5).

The values of fj(i, ℓ) of interest can be obtained, for the
surface codes analyzed in this paper, with limited complexity
by a decoder error patterns search, as illustrated in Section IV.
Equivalently, we can derive the values of βj of interest
starting from the knowledge of the logical operators weight
distribution. To this aim, we define the undetectable errors
weight enumerator function, for a [[n, k, d]] quantum code, as

L(z) =

n∑
w=0

Lwz
w (6)

where Lw is the number of undetectable errors (logical op-
erators) of weight w [24]. This polynomial can be easily
computed starting from the code’s generators by using the
MacWilliams identities [24]. From it, we can evaluate the
errors compatible with the exact number of logical operators
of a certain weight w, leading to the βj .

III. QUANTUM TOPOLOGICAL PLANAR CODES

In this section, we analyze some topological codes which
can be mapped into planar structures and measured using
local operations (i.e., error correction is performed letting
interact qubits which are physically nearby). These codes are
of practical interest for applications where system scalability
is required. In the following, we provide analytical tools that
can be used to reproduce the performance of such codes in
any polarizing quantum channel (i.e., given pX, pY, and pZ).

In Fig. 1a-d we show the actual physical structure of
some planar codes. For example, in Fig. 1a we depict the
[[13, 1, 3]] surface code. Here, a codeword is constituted by
n = 13 qubits, represented with circles. The error syndrome
is extracted by measuring the stabilizers of the code [8]. In
particular, the measurement is performed by letting interact
codeword qubits with auxiliary qubits, usually referred as
ancillas, which are indicated with squares in the figure [2].
After the interaction, by measuring the ancilla qubits we
obtain a syndrome composed by n − k = 12 bits. Maximum
likelihood decoders can be implemented using lookup tables.
However, due to the structure of these codes, suboptimal
decoder based on the MWPM algorithm have been proposed
[32]. This decoder builds a graph where vertices correspond
to error ancillas, and edges are weighted according to the

number of qubits between them. Then, it finds the shortest path
between each couple of ancillas. For example, considering the
code represented in Fig. 1a, if the error Z7 occurs, A6 and
A7 detect an error in their neighbourhood. Finally, connecting
these two ancillas the MWPM is able to localize the error.
Due to degeneracy of these quantum codes, the decoder based
on MWPM is able to guarantee the error correction capability
t and is also able to correct some error patterns of weight
greater than t.

Before proceeding with the analysis of topological codes,
we introduce another graphical notation and some termi-
nologies to describe them. In fact, these codes are usually
represented in terms of a planar lattice where vertices and
cells are called sites and plaquettes, respectively. In Fig. 1e-
h we sketch the graphical representation which highlights
sites and plaquettes. For the sake of clarity, in Fig. 1e a site
named A2 is highlighted in green, while a plaquette named
A10 is highlighted in blue. Sites and plaquettes represent
ancilla qubits in this notation and therefore perform Pauli
measurements on the adjacent edges which stand for physical
qubits and are represented with circles in the figure. Moreover,
edges (i.e., qubits) which resides on the boundary of the lattice
can be categorized as smooth and/or rough. They are defined
as smooth, when the perpendicular ancilla measurement to the
boundary is a Pauli X measurement, and are defined as rough,
when the perpendicular ancilla measurement to the boundary is
a Pauli Z measurement. For example, in Fig. 1e the boundary
qubit D2 is rough and D3 is both rough and smooth (above
is rough and on the right is smooth). This notation is used
during the decoding procedure when ghost ancillas (i.e., virtual
ancillas not physically implemented) are employed.

A. Surface Codes

In this subsection we describe the original surface codes and
revise some recent results on their performance [24], which
will serve for the comparison with the surface codes variants.
Surface codes are topological codes that can be mapped into
a planar rectangular dX × dZ lattice. For example, in Fig. 1e
is shown a lattice with dX = dZ = 3. A symmetric surface
code with distance d = dX = dZ has d2 + (d − 1)2 edges,
which correspond to physical qubits [33]. This structure has
d · (d−1) sites and d · (d−1) plaquettes, which are associated
with X generators, and Z generators, respectively. This means
that each ancilla measurement uses only operators of one
type, Z or X . Moreover, due to the physical structure of
the code, generators in the inner part of the lattice are four-
qubits operators, while along the boundaries we have three-
qubits operators. For this reason, they can be interpreted also
as quantum low density parity check (QLDPC) codes [12],
[30].

As regards logical operators, ZL can be seen as a tensor
product of Z’s acting on a chain of qubits running from a
rough edge to one at the opposite side of the lattice. In a
similar way, the XL will be the tensor product of X’s on a
chain running from a smooth edge to one at the other side of
the dual lattice. In the case described so far, the lattice has
a square shape, as shown in Fig. 1a/e which represents the

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3380088

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

A10

A1 A2

A4A3

A8 A9

A6 A7

A5

A12A11

D1 D2 D3

D4 D5

D8D7D6

D9 D10

D13D12D11

A10

A1 A2

A4A3

A8 A9

A6 A7

A5

A12A11

D1 D2 D3

D4 D5

D8D7D6

D9 D10

D13D12D11

A1

A2

A4

A3

A8

A6 A7

A5

D1

D2 D3

D4 D5

D8D7

D6

D9

A1

A2

A4

A3

A8

A6 A7

A5

D1

D2 D3

D4 D5

D8D7

D6

D9

A10

A1 A2

A4A3

A8 A9

A6 A7

A5

A12A11

A10

A1 A2

A4A3

A8 A9

A6 A7

A5

A12A11

A1

A2

A4

A3

A8

A6 A7

A5

A1

A2

A4

A3

A8

A6 A7

A5

(a) (b) (c) (d)

(e) (f) (g) (h)

Surface XZZX Rotated Rotated XZZX

Fig. 1. (a, e) [[13, 1, 3]] surface code, (b, f) [[13, 1, 3]] XZZX code, (c, g) [[9, 1, 3]] rotated surface code, (d, h) [[9, 1, 3]] rotated XZZX code. The first row
represent the actual code structure with data qubits (circles) and ancillas (squares). Z measurements are depicted in blue, while X measurements are depicted
in green. The second row is a simplified representation of the lattice with sites and plaquettes.

smallest surface code, with parameters [[13, 1, 3]]. Symmetric
surface codes with higher distances can be easily built by
adding the same number of columns and rows to this lattice. In
this way, it is also possible to create asymmetric surface codes
by adopting a rectangular lattice. For instance the [[23, 1, 3/5]]
can be obtained by adding two additional columns to the
[[13, 1, 3]]. By doing so, the shortest ZL logical operator
will be made of five Z Pauli operators, while the shortest
XL will still consist of three X Pauli operators. Indeed
this code has distances dX = 3 and dZ = 5. In general,
asymmetric surface codes are characterized by parameters
[[dXdZ + (dX − 1)(dZ − 1), 1, dX/dZ]].

For the [[13, 1, 3]] surface code the L(z) has been computed
in [24], obtaining L(z) = 6z3+24z4+75z5+240z6+648z7+
1440z8 + 2538z9 + 3216z10 + 2634z11 + 1224z12 + 243z13.
From this, we see that there are 6 logical operators of weight
w = 3. Thus, for the evaluation of β2 we can restrict our
analysis to error patterns of weight 2 combined with a single
qubit error correction operator. Since the [[13, 1, 3]] surface
code logical operators with w = 3 are all composed by three
X or three Z by construction, we have that channel errors
triggering a failure have to be composed by two X or two
Z. Note that an error pattern of the type XY has two X
operators, due to the fact that Y can be decomposed as an X
and a Z operator. Then, for each logical operator, there are(
3
2

)
= 3 possible ways to have 2 errors distributed in 3 possible

locations (i.e., the locations given by the logical operator).
Furthermore, when the logical error under examination is XL

(ZL), the error patterns that could generate it are in the form
of XX (ZZ), XY (ZY ), and Y Y . This results in

(
2
2

)
+(

2
1

)
+
(
2
2

)
= 4 possible error configurations. Then, we have in

total 6 · 3 · 4 error patterns of weight 2 which produce logical
operators of weight 3 (i.e., a decoding failure).

The total number of logical operators with w = 4 are
L4 = 24, but 8 of them are considered implicitly. In partic-
ular, they are taken into account when considering that error
patterns of the type Y Y cause logical operators of weight
w = 3 [24]. The remaining operators are 8 ZL composed only
by Z, and 8 XL composed only by X . Logical operators
with w = 4 are more difficult to treat due to the fact that
they could share j or more Pauli operators. To simplify the
discussion we consider pairs of logical operators. Let us
consider for example the logical operator depicted in Fig. 2i,
ZL = Z2Z3Z4Z6 and the operator ZL = Z3Z5Z6Z7.
For a given operator with w = 4, we have

(
4
2

)
= 6 possible

patterns of j = 2 Pauli errors. However, we can see that two
of these six configurations never cause the logical operator
ZL = Z2Z3Z4Z6. In particular, Z4Z6 would be corrected
due to the degeneracy of the code, while Z2Z3 would cause
a different logical operator ZL = Z1Z2Z3 (a configuration
that we have already counted using w = 3). Hence, we have
to subtract these two patterns from the total of

(
4
2

)
= 6. In

addition, we have to consider that Z2Z4 produce the same
error syndrome of Z3Z6 (the same happens for Z2Z6 and
Z3Z4). Since the decoder acts in a deterministic way, only one
of these two must be counted. However, Z3Z6 could trigger
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Fig. 2. (a-f) Examples of Z logical operators of weight w = 3 of the [[9, 1, 3]] rotated surface code. Data qubits with a ZL error are depicted in red. The
last four Z logical operators have the form of (e) and (f) but with Y operators on qubits D1, D2, D8 and D9. The other 12 X logical have the same
structure on the dual lattice. (g,h) Examples of ZL and XL logical operators of weight w = 4 for the [[13, 1, 3]] XZZX code. (i,l) Examples of ZL and
XL logical operators of weight w = 4 for the [[13, 1, 3]] surface code.

an error also for ZL = Z3Z5Z6Z7. In the end, we have
that each of the 8 pairs of logical operators with w = 4 can
be caused only by 3 error patterns. We conclude that β2 for
the [[13, 1, 3]] code with MWPM decoding over a depolarizing
channel (A = 1) is

β2 = 1− 6 · 3 · 4 + 8 · 3 · 4(
13
2

)
32

=
89

117
≃ 0.76. (7)

This result was derived in [24], but notably there are no
analyses in the literature for the rotated variant as well as
the XZZX surface codes. Hence, in the next subsections we
start from the undetectable error weight enumerator L(z) and
we provide new expressions for the rotated and XZZX codes.

B. Rotated Surface Codes

These codes are obtained starting from standard surface
codes by removing (d− 1)2 codeword qubits [16]. Then, the
structure is usually rotated by 45◦ for graphical representation.
For this reason, literature refers to these as “rotated” surface
codes, even if from a coding theory perspective we could call
them “punctured” surface codes. This procedure can be applied
also to asymmetric codes, by removing (dX − 1) · (dZ − 1)
codeword qubits from the asymmetric surface code, leading to
a [[dXdZ, 1, dX/dZ]] quantum code.

Let us take as an example the [[13, 1, 3]] original sur-
face code. After the puncturing, it becomes the [[9, 1, 3]]
rotated surface code depicted in Fig. 1c/g. This is the code
that has been implemented in [18], [19]. By following the
MacWilliams identities approach [24] we derive the WE
function for the [[9, 1, 3]] rotated surface code as

L(z) = 24z3 + 192z5 + 408z7 + 144z9 . (8)

In this case, we have 24 logical operators of weight w = 3
and zero of weight w = 4. However, as we did for the
original surface code when w = 4, we consider only 16 out
of 24 logical operators, due to the fact that we are implicitly
counting the 8 operators having both Pauli Z and X into the
16 ones. In fact, focusing for example on Y 1Y 2Z4 for the
code in Fig. 2e, we observe that X1X2 is corrected by the
decoder, resulting in the logical operator ZL = Z1Z2Z4. Let
us focus on the 12 logical operators ZL of weight w = 3, and,
in particular, on the eight constituted of only Pauli Z operators,
reported pictorially in Fig. 2a-f. As shown in Section III-A,
we are interested in the number of Z errors of weight j = 2
that can cause these logical operators. However, we can see
that different logical operators share common patterns of Z
errors with weight j = 2 and must be considered only once.
For instance, the operator in Fig. 2a can be caused by three
different patterns of Z errors: Z4Z5, Z4Z6 and Z5Z6. In
particular, Z4Z5 can cause either (a) or (d), while Z5Z6

can lead either to (a) or to (c), depending on the MWPM
implementation. Specifically, each logical operator of the kind
(a-d) can be caused by two patterns of Pauli errors of weight
j = 2 which are in common with others. On average, each of
these four operators can be caused by

(
3
2

)
− 1 = 2 different

patterns of errors of weight j = 2. As regards the four logical
operators in Fig. 2e and Fig. 2g, they have just one pattern of
errors of weight j = 2 in common with each other. Hence,
considering them in pairs as done in Section III-A, we must
take into account 2 ·

(
3
2

)
− 1 = 5 different pattern of errors

per couple. Note that, these eight ZL logical operators can be
caused by ZZ, ZY , and Y Y errors, since the additional
XL errors are corrected by the code. Therefore, for the
[[9, 1, 3]] rotated surface code with MWPM decoding over the
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depolarizing channel we have

β2 = 1− (8 · 2 + 4 · 5) · 4(
9
2

)
32

=
5

9
≃ 0.56. (9)

It is also possible to derive β2 over a phase flip channel,
observing that in this case we have only Z Pauli errors. This
leads for the same [[9, 1, 3]] rotated surface code over a phase
flip channel to

β2 = 1− 4 · 2 + 2 · 5(
9
2

) =
1

2
= 0.5. (10)

From this analysis we observe that the rotated surface [[9, 1, 3]]
code has a worst βt+1 parameter compared to the original
[[13, 1, 3]] code. However, it has a smaller number of qubits
that can be affected by noise and, therefore, looking at βt+1 is
not sufficient to say which is optimal in terms of logical error
rates. In general, to find which is the best among two codes
C1 and C2 we can compute the ratio between their asymptotic
approximations

r(p,A) =

(
n1

t1+1

)
[1− βt1+1(A)](

n2

t2+1

)
[1− βt2+1(A)]

pt1−t2 . (11)

From fj(i, ℓ) we can evaluate the βt+1(A) of the codes
through (3), which allows us to analytically study the function
r against A for comparative performance analysis. Considering
as C1 the [[13, 1, 3]] code and as C2 the [[9, 1, 3]] one, we
obtain from (7) and (9) for the depolarizing channel that
r = 1.18 > 1, meaning that C2 is better than C1 over
that channel. Note that, in this case, r is independent of p,
indicating that the rotated [[9, 1, 3]] code is uniformly better
than the original [[13, 1, 3]] surface code.

C. XZZX Surface Codes

XZZX codes have the same structure as surface codes, i.e.,
the same amount of codeword qubits, ancillas, and generator
weights, but with a different composition of the generators
[17]. While in the original surface codes, each generator is
composed only by X or Z, in XZZX codes the generators
inside the lattice are of the kind XZZX , and along smooth
and rough boundaries we have XXZ and ZZX generators,
respectively. This can be also interpreted as a Hadamard
rotation on some qubits of the lattice. For example, if we apply
the Hadamard rotation to D4, D5, D9, and D10 in Fig. 1a,
we obtain the XZZX code of Fig. 1b. Since in surface codes
half of the generators are composed of X operators while the
other half of Z operators, errors on adjacent qubits produce
horizontal or vertical error chains for both X and Z Pauli
operators. On the contrary, XZZX codes have an intrinsic
symmetry: X errors can align only in vertical directions, while
there are only horizontal Z error chains. Due to this structure,
we show that these codes work better than surface codes over
asymmetric channels.

We can compute for the [[13, 1, 3]] XZZX code

L(z) = 6z3 + 24z4 + 75z5 + 240z6 + 648z7

+ 1440z8 + 2538z9 + 3216z10

+ 2634z11 + 1224z12 + 243z13 . (12)

(a)

A12 A13
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A14

A6

A7

A10

D1

D9

D10 D11

D14D13

D12

D15

A1

A2

A4

A3

A8

A5

D2 D3

D4 D5

D8

D6

D7

A12 A13

A9 A11

A14

A6

A7

A10

D1

D9

D10 D11

D14D13

D12

D15

A1

A2

A4

A3

A8

A5

D2 D3

D4 D5

D8

D6

D7

(b)

Fig. 3. Examples of undetected error patterns on the rotated XZZX [[15, 1, 3]].
In red are represented errors introduced by the channel, in yellow the ancilla
that measures “-1” during the syndrome extraction, and in orange the error
correction applied by the MWPM decoder when the current highlighted ancilla
is given as input. (a) A particular ZZ error producing a logical error when
decoded (unresolvable error). (b) A particular XX error producing a logical
error when decoded.

As anticipated, this is the same as that obtained for the original
surface code. Indeed, the logical operators have the same
structure but they are composed of different Pauli operators.
In particular, notice that, even if the logical operators differ
for some Pauli operators with respect to the surface codes,
a decoder will make its decision based only on the resulting
syndrome. As a result, over the depolarizing channel and for a
MWPM decoder, for the XZZX variant of the [[13, 1, 3]] code,
we still have β2 ≃ 0.76, as can be checked by deriving it in
the same way as (7).

Moving to the analysis over asymmetric channels, we
remark that in the [[13, 1, 3]] surface code the 16 logical
operators which produce unique errors are composed by only
Z or only X operators [24], while, for the [[13, 1, 3]] XZZX
code they consist of both Pauli operators. As a consequence,
some of these operators occur only in the presence of both Z
and X errors. Considering an asymmetric channel where X
errors are less probable than Z errors, it follows that logical
operators of the kind shown in Fig. 2g are, on average, less
probable to occur. This is the reason behind the XZZX per-
formance advantage over asymmetric channels. For example,
letting A → ∞ (i.e., assuming phase flip channel), we have
four error patterns of the type ZX that we have to exclude,
since X errors cannot occur on this channel. Hence, over the
phase-flip channel, the XZZX variant leads to

β2 = 1− 3 · 3 + 4 · 3− 4(
13
2

) =
61

78
≃ 0.782. (13)

This shows how the error correction capability of XZZX codes
increases with the asymmetry of the channel. More results will
be illustrated for other values of A in Section IV.

D. Rotated XZZX Codes

Similarly to the XZZX, these codes can be constructed
starting from the rotated surface code (see Fig. 1c) and then
letting the ancillas measure Z in the horizontal direction,
and X in the vertical direction (see Fig. 1d). Thus, for a
symmetric structure, we obtain a [[d2, 1, d]] error correcting
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code. For symmetric structures, this procedure allows reducing
the number of physical qubits without changing the distance
of the code. For example, the [[9, 1, 3]] and the [[25, 1, 5]]
rotated XZZX codes are those implemented as described in
[20]. In this way, for a bounded distance decoder that corrects
error patterns with up to t errors, we have that rotated codes
are better in terms of performance, due to the reduction of
the codeword length. However, for complete decoders, this is
not always true due to the fact that, as shown in (11), the
performance gap depends on both the codeword length and
the values of βj . We can compute for the [[9, 1, 3]] rotated
XZZX code the WE function obtaining

L(z) = 24z3 + 192z5 + 408z7 + 144z9 (14)

which, as expected, is the same as the non-XZZX version
(8). For the depolariziong channel, the resulting β2 = 5/9
is, therefore, equal to (9) computed for the [[9, 1, 3]] rotated
surface code. Thus, the XZZX variant does not change the
performance over the depolarizing channel. However, the
codes perform differently on asymmetric channels. In fact, let
us now consider the 18 configurations of errors with weight
w = 2 of (15), which, in the rotated surface code, correspond
to only Z Pauli errors. As we did in Fig. 2 for non-rotated
codes, it can be shown that 10 of these configurations include
one X Pauli error in the case of the [[9, 1, 3]] rotated XZZX
code. As a consequence, this code has a great advantage over
asymmetric channels. For example, we compute for it

β2 = 1− 4 · 2 + 2 · 5− 10(
9
2

) =
7

9
≃ 0.778 (15)

over a phase flip channel, to be compared with β2 = 1/2 of
the non-XZZX code given in (9).

Finally, we could be tempted to apply the XZZX variant
to rectangular rotated surface codes. However, it is easy
to see that this will equalize the dX and dZ distances, so
losing correction capabilities. In fact, if we start from an
asymmetric structure of dimension dX × dZ, with parameters
[[dXdZ, 1, dX/dZ]] when we apply the XZZX variant the code
becomes [[dXdZ, 1,min{dX, dZ}]]. This is due to some error
patterns which reduce the error correction capability of the
starting code. We report in Fig. 3a an example where, starting
from the [[15, 1, 3/5]] rotated code, we apply the XZZX
variant. Here we show a decoding error caused by an ZZ
error pattern. Since a weight two pattern is not corrected, the
code distance is not dZ = 5 for Z errors. In Fig. 3b we
also show a failure caused by an XX error, which confirms
that this asymmetric lattice with the XZZX variant has a
symmetric distance d = 3. In general, this is the reason why
the surgery on the lattice which transforms a squared structure
to a rectangular one is not able to improve the distance on
rotated XZZX codes.

IV. NUMERICAL RESULTS

1) Error patterns search via decoding: In Tab. I we report
the percentage of non-correctable errors fj(i, ℓ) (i.e., com-
posed by j Pauli operator, i of type Z and ℓ of type X)
for some surface, XZZX, rotated surface, and rotated XZZX

codes. These values have been evaluated by enumerating the
error patterns of interest and running the MWPM decoder.
To this aim, we built a part of the decoder using the Lemon
C++ library [34], which provides an efficient implementation
of graphs and networks algorithms. As anticipated, we can
observe from Tab. I that each asymmetric code is able to
correct all patterns of ZZ, apart from the rotated XZZX code
using a rectangular lattice of dimension 3 × 5 which has a
value of f2(2, 0) ̸= 0. Note also that both the [[9, 1, 3]] surface
and XZZX codes are not able to correct any error patterns of
the kind Y Y , being f2(0, 0) = 1. The table also highlights
that, surface codes always correct error patterns composed by
i Pauli Z and ℓ Pauli X , for all i, ℓ ≤ t. This is due to the
fact that effective logical operators have only one kind of Pauli
operator, which is no longer true in the case of XZZX codes.

By examining Tab. I, it becomes apparent that the rotated
XZZX surface code on a rectangular lattice exhibits a degra-
dation in code distance. Specifically, without the application of
the XZZX variant, the code is characterized as [[15, 1, 3/5]],
but upon applying the XZZX variant, it becomes a [[15, 1, 3]]
code. Notably, in this specific configuration, there is no en-
hancement of asymmetric error correction capability through
the utilization of XZZX.

Finally, we stress the fact that by using these tabular values,
we can write analytical expressions for the code performance.
This result can be used to analyze and design complex systems
without implementing the decoder. For example, the logical
error rate of a rotated XZZX [[9, 1, 3]] code tends for small p
to

pL ≈ 0.222A2 + 1.556A+ 2.222

(A+ 2)2

(
9

2

)
p2 . (16)

Similarly, for the original [[13, 1, 3]] surface code we have

pL ≈ 0.27A2 + 0.54A+ 1.32

(A+ 2)2

(
13

2

)
p2 . (17)

For example, for A = 10 we obtain pL → 10p2 for the rotated
[[9, 1, 3]] XZZX code and pL → 18.3p2 for the [[13, 1, 3]]
surface code.

2) Asymptotic approximation and bounded distance de-
coder: In Fig. 4 we report the asymptotic approximations
computed using (16) for the [[9, 1, 3]] rotated XZZX code,
over the depolarizing and phase flip channels. We notice that
the estimates provided in (4) and (5) closely align with the re-
sults obtained from simulations using MWPM decoding. This
shows how the performance of an error-correcting quantum
code with a complete decoder can be accurately described
in the typical region of interest, i.e., p < 0.1, where the
code is actually providing an improvement compared to the
uncoded case. Moreover, we show in the same figure the
bounded distance decoding performance, obtained by consid-
ering βj = 0, for j > t = ⌊(d− 1)/2⌋. The bounded distance
decoding is unaffected by the asymmetry parameter. For this
reason, it is not able to describe the advantage of XZZX
codes over asymmetric channels. Specifically, the gap between
bounded distance and MWPM decoding is due to the fact that
topological codes are able to correct a large number of errors
of weight w ⩾ t+1. The [[9, 1, 3]] XZZX code has the greatest
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TABLE I
FRACTION OF NON-CORRECTABLE ERROR PATTERNS fj(i, ℓ) PER ERROR CLASS OF SEVERAL TOPOLOGICAL PLANAR CODES DECODED BY MINIMUM

WEIGHT PERFECT MATCHING: SURFACE, XZZX, ROTATED SURFACE AND ROTATED XZZX, HAVING SYMMETRIC AND ASYMMETRIC ERROR
CORRECTION CAPABILITIES.

Surface

Code XX XZ XY ZZ ZY Y Y

[[13, 1, 3]] 0.27 0 0.27 0.27 0.27 0.51
[[9, 1, 3]] 0.5 0 0.5 0.5 0.5 1
[[23, 1, 3/5]] 0.174 0 0.174 0 0 0.174
[[15, 1, 3/5]] 0.324 0 0.324 0 0 0.324

Code XXX XXZ XXY XZZ XZY XY Y ZZZ ZZY ZY Y Y Y Y

[[23, 1, 3/5]] 0.434 0.174 0.434 0 0.174 0.434 0.066 0.066 0.235 0.487
[[15, 1, 3/5]] 0.635 0.324 0.635 0 0.324 0.635 0.279 0.279 0.603 0.868
[[41, 1, 5]] 0.0212 0 0.0212 0 0 0.0212 0.0212 0.0212 0.0212 0.042
[[25, 1, 5]] 0.127 0 0.127 0 0 0.127 0.127 0.127 0.127 0.254

XZZX

Code XX XZ XY ZZ ZY Y Y

[[13, 1, 3]] 0.218 0.051 0.27 0.218 0.27 0.513
[[9, 1, 3]] 0.222 0.278 0.5 0.222 0.5 1
[[23, 1, 3/5]] 0.123 0.016 0.138 0 0.016 0.154
[[15, 1, 3]] 0.086 0.086 0.171 0.067 0.152 0.324

Code XXX XXZ XXY XZZ XZY XY Y ZZZ ZZY ZY Y Y Y Y

[[23, 1, 3/5]] 0.281 0.153 0.311 0.043 0.18 0.353 0.043 0.086 0.248 0.443
[[15, 1, 3]] 0.244 0.241 0.399 0.236 0.391 0.619 0.211 0.380 0.391 0.868
[[41, 1, 5]] 0.014 0.002 0.016 0.002 0.007 0.021 0.013 0.016 0.021 0.042
[[25, 1, 5]] 0.027 0.034 0.06 0.034 0.067 0.127 0.027 0.06 0.127 0.254
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BD Uncoded

Fig. 4. Logical error probability of the [[9, 1, 3]] XZZX code over depolar-
izing (A = 1) and phase flip (A → ∞) channels. Comparison between
simulation (mark symbols), asymptotic approximations (solid lines), and
bounded distance decoding performance (dotted line).

error correction capability over the phase flip channel, where
it can exploit its intrinsic symmetries which make one kind of
Pauli error to align always in the same direction.

3) Comparison of topological planar codes: In Fig. 5
we depict some XZZX and surface codes over a channel
with asymmetry A = 10. Among the codes with distance
d = 3, the rotated [[9, 1, 3]] XZZX code is to be preferred

due to its good performance by using the lowest number of
qubits. This shows that the rotation technique (i.e., ad-hoc
puncturing of the code) is able to obtain an increase of the
coding rate without deteriorating too much the performance.
In some cases, the puncturing even improves it. As expected,
the combination of a rectangular lattice, rotation, and XZZX
deteriorates the performance, and here it is shown by the
fact that the [[15, 1, 3]] rotated XZZX code (derived from the
[[15, 1, 3/5]] rotated code) achieves the same performance of
the shortest planar code (i.e., the [[9, 1, 3]]). Moving to lower
coding rates, well-design rectangular lattices show a higher Z
error correction capability. For this reason, they represent a
good compromise between performance and codeword length.
On the other hand, code with large distance d as the [[25, 1, 5]]
and the [[41, 1, 5]] show the best performance. Finally, it is
visible in the plot how the code distance influences the slope
of the performance curve. For asymmetric lattices under the
asymptotic condition p ≪ 1 we have that when A < ∞ they
have the same slope of d = 3 codes, while for A = ∞ the
same slope of d = 5 codes.

4) Effect of channel asymmetry on topological planar
codes: In Fig. 6, Fig. 7, and Fig. 8 we show how the logical
error rate is affected by the channel asymmetry A, for all
considered surface codes. To this aim, we fix p = 5 · 10−3 to
be in the p≪ 1 regime.

In Fig. 6 we report the logical error rate for topological
planar codes with d = 3. Since they have the same code
distance the relation between them is independent by the
chosen p. As expected, we have that XZZX technique does
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Fig. 5. Logical error probability vs. physical error probability of the channel.
In the plot are reported several topological planar codes of possible interest
over an asymmetric channel with A = 10. “Rot.” stands for rotated surface
codes.

not provide any advantage when A = 1, while it shows a
clear performance improvement in the presence of channel
asymmetries. More than the performance boost itself, it is
worth noting that they do not deteriorate when A is increasing.
This means that we can design the system for the depolarizing
channel if we do not know the exact value of A, just knowing
that A ⩾ 1. The rotated codes for d = 3 are able to achieve
advantages both in terms of codeword length and performance
compared to the non-rotated counterparts. We can conclude
that the rotated [[9, 1, 3]] XZZX code is the best choice among
the surface codes with distance d = 3.

On the contrary, for d = 5, although with puncturing we
reduce the codeword length, the performance of the rotated
codes slightly degrades on the depolarizing channel as shown
in Fig. 7, due to the larger number of error patterns beyond
the minimum distance that the decoder can correct. However,
given the reduced number of qubits, the small loss for the
depolarizing channel, and the performance improvement for
asymmetric channels, the rotated [[25, 1, 5]] XZZX code can
be considered the best choice among those with d = 5.

Finally, in Fig. 8 we report codes constructed on rectangular
lattices with dimension 3 × 5. The surface codes are the
[[23, 1, 3/5]], with and w/o XZZX, and its rotated versions
[[15, 1, 3/5]] and [[15, 1, 3]] XZZX. As highlighted before, the
latter is the only one not able to guarantee dZ = 5.

V. CONCLUSIONS

We have conducted a comprehensive analysis of state-of-
the-art topological planar quantum codes, specifically focusing
on the XZZX and rotated surface codes. Our primary objective
was to derive analytical performance equations for these
codes when decoded using complete decoders, like the low-
complexity MWPM-based decoder. Our proposed approach
has proven to be highly effective in providing accurate code
logical error rates across a wide range of quantum channels,
including depolarizing, phase-flip, and asymmetric channels.
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Fig. 6. Effect of channel asymmetry on the logical error rate, surface codes
with d = 3, p = 5 · 10−3. “Rot.” stands for rotated surface codes.
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Fig. 7. Effect of channel asymmetry on the logical error rate, surface codes
with d = 5, p = 5 · 10−3. “Rot.” stands for rotated surface codes.

Significantly, our analysis has revealed compelling evidence
that examining the error patterns of weight ⌊(d − 1)/2⌋ + 1
for codes with distance d allows for an accurate description of
the coding performance. Based on the analysis, we have made
noteworthy discoveries regarding specific code variants. For
instance, our research demonstrates that the rotated [[9, 1, 3]]
XZZX code outperforms other surface codes with a distance
of 3, making it an optimal choice. Similarly, among the codes
with a distance of 5, the rotated [[25, 1, 5]] XZZX code show-
cases superior performance. Additionally, we have established
that the combined use of rotation and XZZX variants can
lead to a degradation in performance when starting from a
rectangular lattice designed to provide asymmetric error cor-
rection capabilities. The tables presented in our paper provide
a valuable resource for computing the performance of surface

This article has been accepted for publication in IEEE Journal on Selected Areas in Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2024.3380088

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

0.1 1 10 100 ∞
10−5

10−4

10−3

Asymmetry, A

L
og

ic
al

Q
ub

it
E

rr
or

Pr
ob

ab
ili

ty
,p

L

[[15, 1, 3/5]] Rot.
[[15, 1, 3]] Rot-XZZX
[[23, 1, 3/5]]

[[23, 1, 3/5]] XZZX

Fig. 8. Effect of channel asymmetry on the logical error rate, surface codes
with dX = 3/dZ = 5, p = 5 · 10−3. “Rot.” stands for rotated surface codes.

codes over arbitrary asymmetric quantum channels. This tool
facilitates the analysis and design of complex systems that
employ error correction techniques.
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